
ON D`-EXTENSIONS OF ODD PRIME DEGREE `

HENRI COHEN AND FRANK THORNE

Abstract. Generalizing the work of A. Morra and the authors, we give explicit formulas for the Dirichlet
series generating function of D`-extensions of odd prime degree ` with given quadratic resolvent. Over the
course of our proof, we explain connections between our formulas and the Ankeny-Artin-Chowla conjecture,
the Ohno–Nakagawa relation for binary cubic forms, and other topics.

1. Introduction

The theory of cubic number fields is, in many respects, well understood. One reason for this is that
the Delone-Faddeev [18] and Davenport-Heilbronn [17] correspondences parametrize cubic fields in terms
of binary cubic forms, up to equivalence by an action of GL2(Z), and satisfying certain local conditions.
Therefore questions about counting cubic fields can be reduced to questions about counting lattice points,
and this idea has led to asymptotic density theorems as well as other interesting results.

In more recent work, Bhargava [5, 6] obtained similar parametrization and counting results for S4-quartic
and S5-quintic fields. However, generalizing this work to number fields of arbitrary degree ` seems difficult, if
not impossible: the parametrizations of S3-cubic, S4-quartic, and S5-quintic fields are all by prehomogeneous
vector spaces, and for higher degree fields there is no apparent prehomogeneous vector space for which one
could hope to establish a parametrization theorem.

In [12] and [14], A. Morra and the authors contributed to the cubic theory by giving explicit formulas for
the Dirichlet generating series of discriminants of cubic fields having given resolvent. For example, writing

(1.1) Φ−107(s) =
∑

[K:Q]=3
Disc(K)=−107n2

n−s ,

we have the explicit formula

(1.2) Φ−107(s) = −1

2
+

1

2

(
1 +

2

32s

) ∏
(321p )=1

(
1 +

2

ps

)
+

(
1 +

2

32s

)∏
p

(
1 +

ω(p)

ps

)
,

where ω(p) is equal to 2 or −1 if p is totally split or inert in the unique cubic field of discriminant 321,
determined by the polynomial x3 − x2 − 4x+ 1, and ω(p) = 0 otherwise. Similar formulas hold when −107
is replaced by any other fundamental discriminant D; the formula has one main term, and one additional
Euler product for each cubic field of discriminant −D/3, −3D, and −27D.

The proofs involve class field theory and Kummer theory; see also work of Bhargava and Shnidman [7]
obtaining related results through a study of binary cubic forms.

The object of the present paper is to generalize the theory developed in [12] and [14] to degree ` extensions
having Galois group D`, for any odd prime `.
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Let L/k be an extension1 of odd prime degree `, let N = L̃ be a Galois closure of L, and assume that
Gal(N/k) ' D`, the dihedral group with 2` elements. We will refer to any such L as a D`-extension of k, or
a D`-field when k = Q. Below we also refer to F`-extensions with the analogous meaning.

There exists a unique quadratic subextension K/k of N/k, called the quadratic resolvent of L, with
Gal(N/K) ' C`, and a nontrivial theorem of J. Martinet involving the computation of higher ramification
groups (see Propositions 10.1.25 and 10.1.28 of [8]) tells us that its conductor f(N/K) is of the form
f(N/K) = f(L)ZK , where f(L) is an ideal of the base field k, and that the relative discriminant d(L/k) of

L/k is given by the formula d(L/k) = d(K/k)(`−1)/2f(L)`−1.
We study the set F`(K) of D`-extensions of k whose quadratic resolvent field is isomorphic to K. (Here

and in the sequel, extensions are always considered up to k-isomorphism.) More precisely, we want to
compute as explicitly as possible the Dirichlet series2

Φ`(K, s) =
1

`− 1
+

∑
L∈F`(K)

1

N (f(L))s
,

where N (f(L)) = Nk/Q(f(L)) is the absolute norm of the ideal f(L).

Our most general result is Theorem 6.1, which we specialize to a more explicit version in the case k = Q
as Theorem 7.3. This should be considered as the most important result of this paper. In Section 9 we prove
that our formulas can always be brought into a form similar to (1.2). Two sample results are as follows:

(1.3) Φ5(Q(
√

5), s) =
1

20

(
1 +

4

5s

) ∏
p≡1 (mod 5)

(
1 +

4

ps

)
+

1

5

(
1− 1

`s

) ∏
p≡1 (mod 5)

(
1 +

ωE(p)

ps

)
,

where E is the field defined by x5 + 5x3 + 5x− 1 = 0 of discriminant 57, and ωE(p) = −1, 4, or 0 according
to whether p is inert, totally split, or other in E. We also have

(1.4) Φ5(Q(
√

13), s) =
1

20

(
1 +

4

25s

)∏
p

(
1 +

4

ps

)
+

1

5

(
1− 1

25s

)∏
p

(
1 +

ωE(p)

ps

)
,

where the products are over suitable primes p (see Example 9.8), E is the field defined by x5+5x3+5x−3 = 0,
and ωE(p) is as before.

In a companion paper, joint with Rubinstein-Salzedo [13], we investigate a curious twist to this story.
Taking the n = 1 term of formula (1.2) (or, rather, its generalization to any D) yields the nontrivial identity

(1.5) N3(D
∗) +N3(−27D) =

{
N3(D) if D < 0,

3N3(D) + 1 if D > 0,

for any fundamental discriminant D, where D∗ = −3D if 3 - D and D∗ = −D/3 if 3 | D. (Note that
there are no cubic fields of discriminant −3D if 3 | D.) This identity was previously conjectured by Ohno
[33] and then proved by Nakagawa [31], as a consequence of an ‘extra functional equation’ for the Shintani
zeta function associated to the lattice of binary cubic forms. Our generalization of (1.2) thus subsumes the
Ohno–Nakagawa theorem (1.5).

1A remark on our choice of notation: Readers familiar with [14] or [12] should note that by and large we adopt the notation
of [14] and the progression of [12]; the reader knowledgeable with the latter paper can immediately see the similarities and
differences. (See also Morra’s thesis [29] for a version of [12] with more detailed proofs.) What was called (K2,K, L,K

′
2) in [12]

will now be called (K,L,Kz,K
′) (so that the main number field in which most computations take place is Kz), and the field

names (k, kz, N,Nz) stay unchanged. The primitive cube root of unity ρ is replaced by a primitive `th root of unity ζ`.
2The series also depends on the base field k, which we do not include explicitly in the notation.
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Our proof there used the Ohno–Nakagawa theorem, but in [13] we further develop some of the techniques
of this paper (in particular, of Section 8) to give another proof of (1.5) and give a generalization to any prime
` ≥ 3. For ` > 3 our work relates counts of D`-fields (the right-hand side of (1.5)) to counts of F`-fields `
(the left-hand side), where F` is the Frobenius group of order `(`− 1), whose definition is recalled in Section
9. (Note that S3 = D3 = F3.) The result involves a technical (Galois theoretic) condition on the F`-fields
which is not automatically satisfied for ` > 3, and we defer to [13] for a complete statement of the results. It
is however important to note that, as for the cubic case, even the case n = 1 of our Dirichlet series identities
such as (1.4) gives interesting results: for instance, for any negative fundamental discriminant −D coprime
to 5, we have

(1.6) NF5

(
(−1)053D2

)
+NF5

(
(−1)055D2

)
+NF5

(
(−1)057D2

)
= ND5

(
(−D)2

)
+ND5

(
(−5D)2

)
,

and if instead D > 1, then we have

(1.7) NF5

(
(−1)253D2

)
+NF5

(
(−1)255D2

)
+NF5

(
(−1)257D2

)
= 5
(
ND5

(
D2
)

+ND5

(
(5D)2

))
+ 2 .

In the above, NG(X) denotes the number of G-fields with discriminant exactly equal to X, and (−1)r

specifies the number of pairs of complex embeddings.
If we want an identity counting D5-fields of discriminant (±D)2 or (±5D)2 alone, then the left side of (1.6)

and (1.7) becomes more complicated, and involves the Galois condition mentioned above. The relevance to
the present paper is that it is precisely those F`-fields counted by this identity that yield Euler products. We
describe this in more detail in Section 9.

There is one further curiosity that emerges in our work: a connection to a well-known conjecture attributed
to3 Ankeny, Artin, and Chowla [1] which states that if ` ≡ 1 (mod 4) is prime and ε = (a + b

√
`)/2 is the

fundamental unit of Q(
√
`), then ` - b. As we will see, the truth or falsity of the conjecture will be reflected

in our explicit formula for D`-extensions having quadratic resolvent Q(
√
`). Note that the conjecture is

known to be true for ` < 2 · 1011, but on heuristic grounds it should be false: if we assume independence of
the divisibility by `, the number of counterexamples for ` ≤ X should be around log(log(X))/2; in addition,
numerous counterexamples can easily be found for “fake” quadratic fields, see e.g., [15, 32].

Our work follows several other papers studying dihedral field extensions. Much of the theory (such as
Martinet’s theorem) is described in the first author’s book [8]. Another reference is Jensen and Yui [23],
who studied D`-extensions from multiple points of view. They proved that if ` ≡ 1 (mod 4) is a regular
prime, then no D`-extension of Q has discriminant a power of `; our proof uses similar ideas, and we will
recover and strengthen their result. Jensen and Yui also studied the problem of constructing D`-extensions,
and gave several examples.

Another relevant work is the paper of Louboutin, Park, and Lefeuvre [28], who developed a general class
field theory method to construct real D`-extensions. These problems have also been addressed in the function
field setting by Weir, Scheidler, and Howe [38].

Since some of the proofs are quite technical, we give a detailed overview of the contents of this paper.
We begin in Section 2 with a characterization of the fields L ∈ F`(K) using Galois and Kummer theory.

These fields are in bijection with elements of Kz := K(ζ`) modulo `th powers, satisfying certain restrictions
which guarantee that the associated Kummer extensions of Kz descend to degree ` extensions of k. Writing

such an extension as Kz(
√̀
α) with αZKz =

∏
0≤i≤`−2 a

gi

i q
`, we further characterize these fields in terms of

conditions on the ai and an associated member u of a Selmer group associated to Kz.

3Ankeny, Artin, and Chowla did not conjecture this in [1], although they did explicitly ask if it is true. Mordell [30] attributed
the conjecture to them in followup work, where he proved the conjecture for regular primes.
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These conditions are described in terms of the group ring F`[G], where G = Gal(Kz/k). Groups such as

K∗z/K
∗
z
`, Cl(Kz)[`], and the Selmer group are naturally F`[G]-modules, and our conditions correspond to

being annihilated by certain elements of F`[G] (see Definition 2.2).
In Section 2 we also study the subfields of Kz/k, with particular attention to a degree `−1 extension K ′/k

called the mirror field of K; we will see that much of the arithmetic of prime splitting in various extensions
can be conveniently expressed in terms of K ′.

The reader who is willing to take our technical computations for granted is advised to look only at the
necessary definitions in the intermediate sections and to skip directly to Section 6.

In Section 3, we give an expression for the ‘conductor’ f(L) in terms of the quantities ai and u defined
in Section 2. The main result, Theorem 3.8, was proved by the first author, Diaz y Diaz, and Olivier in
[11] in their study of cyclic extensions of degree `, and we also prove a few additional related lemmas and
propositions. Unfortunately the results of that section are rather complicated to state, and oblige us to
introduce a fair amount of notation.

In Section 4 we begin to study the fundamental Dirichlet series using the results proved in Section 3.
That section is mostly elementary and combinatorial (but messy), and in Section 5 we study the size of a
certain Selmer group appearing in our formulas. That section is heavily algebraic and again appeals heavily
to the results of [11].

In Section 6, we put everything together to obtain our most general formula (Theorem 6.1) for Φ`(K, s),
a generalization of the main theorem of [12].

In the remainder of the paper we further study this formula with the aim of making everything more
explicit; for the most part we now specialize to the case k = Q. In Section 7 we compute various quantities
appearing in Theorem 6.1 for k = Q, leading to Theorem 7.3, a more explicit specialized version of Theorem
6.1. This also allows us to obtain asymptotics for the number of D`-extensions of Q, proved in Corollary
7.5.

The formula of Theorem 7.3 falls short of being explicit in one important aspect: it involves a sum (of
Euler products) over the character group of a somewhat complicated group Gb. So in Section 8 we further
study its size. The main result is the Kummer pairing of Theorem 8.2, familiar from (for example) the proof
of the Scholz reflection principle, and fairly simple to prove. One important input (Proposition 8.1) is a very
nice relationship, due essentially to Kummer and Hecke, between the conductor of Kummer extensions of
Kz, and congruence properties of the `th roots used to generate them. This section culminates in an explicit
formula for the size of Gb.

Some of our work in Section 8 (including Theorem 8.2) is also critical in [13], and to avoid redundancy
we only sketch a few results whose complete proofs are given there.

In Section 8 we also explore the connection to the conjecture of Ankeny, Artin, and Chowla mentioned
above. The truth or falsity of this conjecture will then be reflected in our explicit formula (Proposition

9.2) for Φ`(Q(
√
`), s), and in Corollary 9.4 we will give a proof of an observation of Lemmermeyer, that the

existence of D`-fields ramified only at ` is equivalent to the falsity of the Ankeny-Artin-Chowla conjecture.
In Section 9 we further study the characters of the group Gb, and prove (in Theorem 9.1) that each such

character corresponds to an F`-extension E/k, such that the values of χ correspond to the splitting types
of primes in E. This was done for ` = 3 and k = Q in [14], but in Theorem 9.1 we do not require k = Q.

It is here that the connection to the Ohno–Nakagawa theorem emerges; for ` = 3 and k = Q, we established
in [14] (using Ohno–Nakagawa) that the set of characters of Gb corresponds precisely to a suitable and easily
described set of fields E. For ` > 3 we require the generalization of Ohno–Nakagawa established in [13], and
so in Section 9 we say a bit more about the results of [13] and explain their relevance. We also prove an

explicit formula valid for the ‘special case’ K = Q(
√
`).
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2. Galois and Kummer Theory

2.1. Galois and Kummer theory, and the Group Ring. We will use the results of [11], but before
stating them we need some notation. We denote as usual by ζ` a primitive `th root of unity, we set
Kz = K(ζ`), kz = k(ζ`), Nz = N(ζ`), and we denote by τ , τ2, and σ generators of kz/k, K/k, and N/K
respectively, with τ `−1 = τ22 = σ` = 1.

The number ζ` could belong to k, or to K, or generate a nontrivial extension of K of degree dividing
`−1. These essentially correspond respectively to cases (3), (4), and (5) of [12] (cases (1) and (2) correspond
to cyclic extensions of k of degree `, which have been treated in [11]). Cases (3) and (4) are considerably
simpler since we do not have to adjoin ζ` to K to apply Kummer theory.

We are particularly interested in the case k = Q, in which case either [Kz : K] = ` − 1, or [Kz : K] =

(` − 1)/2, i.e., K ⊂ kz, which is equivalent to K = Q(
√
`∗) with `∗ = (−1)(`−1)/2`. To balance generality

and simplicity, we assume that k is any number field for which [kz : k] = ` − 1. Then, as for k = Q there
are two possible cases: either [Kz : K] = ` − 1, which we call the general case, or K ⊂ kz = Kz and
[Kz : K] = (` − 1)/2, which we will call the special case. Note that if ` = 3 this means that ζ` ∈ K, so we
are in case (4), but there is no reason to treat this case separately. It should not be particularly difficult to
extend our results to any base field k, as was done in [11].

We set the following notation:

• We let g be a primitive root modulo `, and also denote by g its image in F∗` = (Z/`Z)∗.
• We let G = Gal(Kz/k). Thus in the general case G ' (Z/2Z) × (Z/`Z)∗, while in the special case
G = Gal(kz/k) ' (Z/`Z)∗. We denote by τ the unique element of Gal(kz/k) such that τ(ζ`) = ζg` ,
so that τ generates Gal(kz/k), and we again denote by τ its lift to Kz or Nz.

The composite extension Nz = NKz is Galois over k, and σ and τ naturally lift to Nz. In the general
case, τ and σ commute; in the special case, τ2 is a generator of Gal(Kz/K) and τ2 can be taken to be any
odd power of τ , for instance τ itself, so that τστ−1 = σ−1.

This information is summarized in the two Hasse diagrams below, depicting the general and special cases
respectively.



6 HENRI COHEN AND FRANK THORNE

Nz

<τ>

<σ>

Nz

<τ2>

<σ>

N

<τ2>

<σ>'C`

N

<τ>

<σ>'C`

Kz ⊇ pz

<τ>

<τ2>

Kz = kz ⊇ pz

<τ2>

<τ>

`L

`

`L

`

K ⊇ p

<τ2>

kz = k(ζ`) ⊇ pk

<τ>

K ⊇ p

<τ>

k ⊇ p k ⊇ p

In the above p, p, pk, pz indicate our typical notation (to be used later) for primes of k,K, kz,Kz respec-
tively.

Lemma 2.1. For a mod (`− 1) and b mod 2, set

ea =
1

`− 1

∑
j mod (`−1)

gajτ−j ∈ F`[G] and, in the general case, e2,b =
1

2

∑
j mod 2

(−1)bjτ−j2 .

The ea form a complete set of orthogonal idempotents in F`[G], as do the e2,b in the general case, so in the
general case any F`[G]-module M has a canonical decomposition M =

∑
a mod (`−1), b mod 2 eae2,bM , while in

the special case we simply have M =
∑

a mod (`−1) eaM .

Proof. Immediate and classical; see, e.g., Section 7.3 of [19]. �

We set the following definitions:

Definition 2.2. In the group ring F`[G], we set

T =

{
{τ2 + 1, τ − g} in the general case ,

{τ + g} in the special case .

(1) We define ι(τ2 + 1) = e2,1 = 1
2(1− τ2), and for any a we define ι(τ − ga) = ea, so that for instance

ι(τ + g) = e(`+1)/2.
(2) For any F`[G] module M , we denote as usual by M [T ] the subgroup annihilated by all the elements

of T .

Lemma 2.3. Let M be an F`[G]-module.

(1) For any t ∈ T we have t ◦ ι(t) = ι(t) ◦ t = 0, where the action of t and ι(t) is on M .
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(2) For all t ∈ T we have M [t] = ι(t)M and M [ι(t)] = t(M).
(3) If x ∈M [t] then ι(t)(x) = x.

Proof. This follows from Lemma 2.1. In particular, τea = gaea, so that the image of τ−ga is
∑

b 6=a eaM . �

2.2. The Bijections.

Proposition 2.4. (1) There exists a bijection between elements L ∈ F`(K) and classes of elements

α ∈ (K∗z/K
∗
z
`)[T ] such that α 6= 1, modulo the equivalence relation identifying α with αj for all j

with 1 ≤ j ≤ `− 1.
(2) If α ∈ K∗z is some representative of α, the extension L/k corresponding to α is the field Kz(

√̀
α)G,

i.e., the fixed field of Kz(
√̀
α) by a lift of G = Gal(Kz/k) to Gal(Kz(

√̀
α)/k).

Proof. First assume that L ∈ F`(K) and define Kz, N , Nz as above; since ζ` ∈ Kz, by Kummer theory

cyclic extensions of degree ` of Kz are of the form Nz = Kz(
√̀
α), where α 6= 1 is unique in K∗z/K

∗
z
` modulo

the equivalence relation mentioned in the proposition. As Nz determines L up to conjugacy, we must prove
that α is annihilated by T .

Writing Nz = Kz(θ) with θ` = α, we may assume the generator σ chosen so that σ(θ) = ζ`θ. Set ε = 1 if
we are in the general case, ε = −1 if we are in the special case, so that τστ−1 = σε. We have τ(ζ`) = ζg` , so
that

σ(τ(θ)) = τ(σε(θ)) = τ(ζε` )τ(θ) = ζεg` τ(θ) ,

hence if we set η = τ(θ)/θεg we have σ(η) = ζεg` τ(θ)/ζεg` θ
εg = η. It follows by Galois theory that η ∈ Kz, so

that τ(α)/αεg = η` ∈ K∗z `, hence that α ∈ (K∗z/K
∗
z
`)[τ − εg].

Concerning τ2 (in the general case only), the relation τ2στ
−1
2 = σ−1 similarly shows that σ(θτ2(θ)) = θτ2(θ)

so that α ∈ (K∗z/K
∗
z
`)[τ2 + 1], in other words α ∈ (K∗z/K

∗
z
`)[T ] as desired.

To conclude, we must prove that each α ∈ (K∗z/K
∗
z
`)[T ] determines such an L ∈ F`(K). Again write

θ =
√̀
α with σ(θ) = ζ`θ and Nz = Kz(θ). Define an automorphism τ of Nz, agreeing with τ on Kz, by

writing τ(θ) = ηθεg (ε = ±1 as before), where η` = τ(α)/αεg ∈ K`
z, so that η ∈ Kz is well-defined up to an

`th root of unity, and we make an arbitrary such choice.
Computations show that τσε(θ) = στ(θ) and that τ `−1(θ) is θ times a root of unity. Each τσi is also a

lift of τ .
In the general case, we check that there is a unique such lift, which we denote simply by τ , for which

τ `−1(θ) = θ. Write τ2(θ) = η2/θ with η`2 = ατ2(α) where η2 is in Kz and indeed kz. We check that τ2
2(θ) = θ

and τ2σ(θ) = σ−1τ2, so that by rewriting τ2 as τ2 we see that Nz/k is Galois with Galois group C`−1×D`, as
required. Here the choice of lift τ2 is not uniquely determined: D` has ` elements of order 2, corresponding
to the ` conjugate subextensions L/k of degree `.

In the special case, rewriting τ as τ we now have τ `−1 = 1 regardless of the choice of lift: we have
τ `−1(θ) = ζi`θ for some integer i, so that unless i ≡ 0 (mod `), τ is of order `(`− 1). We already know that
Nz/k is Galois, as the τ rσs are distinct automorphisms of Nz/k for 0 ≤ τ < ` − 1, 0 ≤ σ < `. We have
already proved that Gal(Nz/k) is nonabelian, and in particular noncyclic, hence i = 0. So τ `−1 = 1 and
Gal(Nz/k) has the required presentation.

�

Recall from [8] the following definition:

Definition 2.5. We denote by V`(Kz) the group of (`-)virtual units of Kz, in other words the group of
u ∈ K∗z such that uZKz = q` for some ideal q of Kz, or equivalently such that ` | vpz(u) for any prime ideal

pz of Kz. We define the (`-)Selmer group S`(Kz) of Kz by S`(Kz) = V`(Kz)/K
∗
z
`.

The following lemma shows in particular that the Selmer group is finite.
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Lemma 2.6. We have a split exact sequence of F`[G]-modules

1 −→ U(Kz)

U(Kz)`
−→ S`(Kz) −→ Cl(Kz)[`] −→ 1 ,

where the last nontrivial map sends u to the ideal class of q such that uZKz = q`.

Proof. Exactness follows from the definitions, and the sequence splits because ` - |G| (see for example [10,
Lemma 3.1] for a proof). �

From Lemma 2.3 we extract the following technical result.

Lemma 2.7. Given t ∈ T and α ∈ K∗z such that t(α) is a virtual unit, we have t(α) = γ`t(u) for some
γ ∈ K∗z and some virtual unit u.

Moreover, if α is annihilated modulo K∗z
` by t′ 6= t ∈ T , we may choose u to be annihilated by t′ in S`(Kz).

Proof. Given t and α, (1) of Lemma 2.3 applied to M = K∗z/K
∗
z
` implies that ι(t)(t(α)) ∈ K∗z

`. Since

t(α) is a virtual unit, its image t(α) is annihilated by ι(t) in the Selmer group. By Lemma 2.3 applied to

M = S`(Kz), we have t(α) = t(β) for some β ∈ S`(Kz), giving the first result. For the second, we replace
each of the modules M by M [t′]: since t and t′ commute, if α ∈M is annhilated by t′, so is t(α). �

Proposition 2.8. (1) There exists a bijection between elements L ∈ F`(K) and equivalence classes of
`-tuples (a0, . . . , a`−2, u) modulo the equivalence relation

(a0, . . . , a`−2, u) ∼ (a−i, . . . , a`−2−i, ug
i)

for all i (with the indices of the ideals a considered modulo `− 1), where the ai and u are as follows:

(a) The ai are coprime integral squarefree ideals of Kz such that if we set a =
∏

0≤i≤`−2 a
gi

i then the

ideal class of a belongs to Cl(Kz)
`, and a ∈ (I(Kz)/I(Kz)

`)[T ], where as usual I(Kz) denotes
the group of (nonzero) fractional ideals of Kz.

(b) u ∈ S`(Kz)[T ], and in addition u 6= 1 when ai = ZKz for all i.
(2) Given (a0, . . . , a`−2), a, and u as in (a), the field L ∈ F`(K) is determined as follows: There exist

an ideal q0 and an element α0 ∈ Kz such that aq`0 = α0ZKz with α0 ∈ (K∗z/K
∗
z
`)[T ]. Then L is any

of the ` conjugate degree ` subextensions of Nz = Kz(
√̀
α0u), where u is an arbitrary lift of u.

Proof. Given L, associateNz = Kz(
√̀
α) as in Proposition 2.4. We may write uniquely αZKz =

∏
0≤i≤`−2 a

gi

i q
`,

where the ai are coprime integral squarefree ideals of Kz, and they must satisfy the conditions of (a).

Each a which thus occurs satisfies aq` = α0ZKz for some α0 with α0 ∈ (K∗z/K
∗
z
`)[T ], and for each a we

arbitrarily associate such an α0. Given aq` = αZKz , u := α/α0 is a virtual unit; writing u for its class in
S`(Kz), u is annhiliated by T because both α and α0 are.

This establishes the bijection, and we conclude by observing the following:

• The elements α and β give equivalent extensions if and only if β = αg
i
γ` for some element γ and

some i modulo ` − 1, and then if α0ZKz =
∏
j a

gj

j q` and α = α0u, we have on the one hand

βZKz =
∏
j a

gj

j−iq
`
1 for some ideal q1, so the ideals aj are permuted cyclically, and on the other hand

β = (α0u)g
i
γ` = αg

i

0 u
giγ`, so u is changed into ug

i
, giving the equivalence described in (1).

• The only fixed point of the transformation (a0, . . . , a`−2, u) 7→ (a`−2, a0, . . . , a`−3, ug) is obtained with
all the ai equal and u = ug, but since the ai are pairwise coprime this means that they are all equal

to ZKz , and u = ugi for all i, and so u = 1.

�



ON D`-EXTENSIONS OF ODD PRIME DEGREE ` 9

Remark 2.9. Note that condition (a) implies that a ∈ (Cl(Kz)/Cl(Kz)
`)[T ], and for any modulus m coprime

to a also that a ∈ (Clm(Kz)/Clm(Kz)
`)[T ].

Lemma 2.10. Keep the above notation, and in particular recall that a =
∏

0≤i≤`−2 a
gi

i . The condition

a ∈ (I(Kz)/I(Kz)
`)[T ] is equivalent to the following:

(1) In the general case τ(ai) = ai−1 (equivalently, ai = τ−i(a0)), and τ (`−1)/2(a0) = τ2(a0).
(2) In the special case τ(ai) = ai+(`−3)/2, so that a2i = τ−2i(a0) and a2i+1 = τ−2i(a1), with the following

conditions on (a0, a1):

• If ` ≡ 1 (mod 4) then a1 = τ (`−3)/2(a0), or equivalently a0 = τ (`+1)/2(a1).

• If ` ≡ 3 (mod 4) then τ (`−1)/2(a0) = a0 and τ (`−1)/2(a1) = a1.

Proof. Since τ(a) =
∏
i τ(ai)

gi and the τ(ai) are integral, squarefree and coprime ideals, this is the canonical

decomposition of τ(a) (up to `th powers). On the other hand ag =
∏
i a
gi

i−1. Assume first that we are
in the general case. Since τ(a)/ag is an `th power, by uniqueness of the decomposition we deduce that

τ(ai) = ai−1. A similar proof using that g(`−1)/2 ≡ −1 (mod `) shows that τ2(ai) = ai+(`−1)/2, and putting

everything together proves (1). Assume now that we are in the special case, so that τ(a)/a−g is an `th

power. Since −g ≡ g(`+1)/2 (mod `), the same reasoning shows that τ(ai) = ai−(`+1)/2 = ai+(`−3)/2, so in

particular τ2(ai) = ai−(`+1) = ai−2, and the other formulas follow immediately. �

Corollary 2.11. Let pz be a prime ideal of Kz dividing some ai, denote by p the ideal of K below pz, and
in the general case denote by pk the ideal of kz below pz.

(1) In all cases p is totally split in the extension Kz/K. In addition:
(2) In the general case pk is split in the quadratic extension Kz/kz.
(3) In the special case with ` ≡ 1 (mod 4), if we denote by p the ideal of k below p, then p is totally split

in the extension Kz/k (equivalently p is split in the quadratic extension K/k).

Proof. Assume first that we are in the general case. Then τ acts transitively on the ai, all of which are
squarefree and coprime, and so any p dividing ai must have `− 1 nontrivial conjugates (including p itself),
establishing (1). Similarly, τ2(ai) = ai+(`−1)/2, and for the same reason the prime ideals of Kz dividing the
ai come from prime ideals pk of kz which split in Kz/kz.

In the special case, if p splits as a product of h conjugate ideals in Kz, the decomposition group D(pz/p)
has cardinality ef = (` − 1)/h hence is the subgroup of Gal(Kz/k) generated by τh since [Kz : k] = ` − 1.
Since τh(ai) = a(`−3)h/2+i and τh fixes pz, it follows as before that (` − 1) | (` − 3)h/2. Now evidently
(` − 1, (` − 3)/2) is equal to 1 if ` ≡ 1 (mod 4) and to 2 if ` ≡ 3 (mod 4). Thus when ` ≡ 1 (mod 4) we
deduce as above that (`− 1) | h hence that e = f = 1, so that p is totally split in Kz/k. On the other hand
if ` ≡ 3 (mod 4) we only have (` − 1)/2 | h. If h = ` − 1 then p is again totally split. On the other hand,
if h = (`− 1)/2 then ef = 2, so p is either inert or ramified in the quadratic extension K/k, so p is totally
split in Kz/K. �

This leads to the following definition:

Definition 2.12. We define D (resp., D`) to be the set of all prime ideals p of k with p - ` (resp., with
p | `) such that the prime ideals pz of Kz above p satisfy the above conditions (in other words p totally split
in Kz/K, and in addition in the general case pk split in Kz/kz, and in the special case with ` ≡ 1 (mod 4),
p split in K/k).

Thus the above corollary says that the prime ideals p of k below prime ideals of Kz dividing one of the ai
belong to D ∪D`.
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2.3. The Mirror Field. We now introduce the mirror field of K. When ` = 3 this notion is classical and
well-known; the mirror field of Q(

√
D) is Q(

√
−3D) and the Scholz reflection principle establishes that the

3-ranks of their class groups differ by at most 1.
In the case ` > 3 this notion is less well known but does appear in the literature (see for instance the

works of G. Gras [20] and [21]), and in particular Scholz’s theorem can be generalized to this context, see
for instance [25] for the case ` = 5.

Definition 2.13. In the general case, we define the mirror field K ′ of K (implicitly, with respect to the

prime `) to be the degree `− 1 subextension of Kz/k fixed by τ (`−1)/2τ2.

We do not define the mirror field for the special case, although we could say that it is kz = Kz, so in this
subsection we assume that we are in the general case.

Lemma 2.14. Write K = k(
√
D) for some D ∈ k∗ \ k∗2.

(1) The extension K ′/k is cyclic of degree `− 1, and K ′ = k
(√
D(ζ` − ζ−1` )

)
.

(2) The field K ′ is a quadratic extension of k(ζ` + ζ−1` ), more precisely

K ′ = k(ζ` + ζ−1` )
(√
−D(4− α2)

)
,

where α = ζ` + ζ−1` .

Proof. Straightforward; for (2), note that −D(4− α2) = D(ζ` − ζ−1` )2. �

The point of introducing the mirror field is the following result:

Proposition 2.15. Assume that we are in the general case. As before, let p be a prime ideal of k, pz an
ideal of Kz above p, and pk and p the prime ideals below pz in kz and K respectively. The following are
equivalent:

(1) The ideals pk and p are both totally split in Kz/kz and Kz/K respectively (in other words p ∈ D∪D`).
(2) The ideal p is totally split in K ′/k.

In particular (by Corollary 2.11), (1)-(2) are true if pz divides some ai. Moreover, these conditions imply
that exactly one of the following is true:

(a) p is split in K/k and totally split in kz/k.
(b) p is inert in K/k and split in kz/k as a product of (`− 1)/2 prime ideals of degree 2.
(c) p is above `, is ramified in K/k, and its absolute ramification index e(p/`) is an odd multiple of

(`− 1)/2 (equivalently e(p/`) is an odd multiple of `− 1).

Proof. (1) if and only if (2): We see that any nontrivial elements of D(pz/p) must be of the form τ iτ2 with

i 6≡ 0 (mod `−1), and squaring we have τ2i ∈ D(pz/p), so 2i ≡ 0 (mod `−1), so D(pz/p) ⊂ {1, τ (`−1)/2τ2},
yielding (2). The converse is proved similarly.

To prove the last statement, first recall from [10] the following result:

Lemma 2.16. Let K be any number field and Kz = K(ζ`). The conductor of the extension Kz/K is given
by the formula

f(Kz/K) =
∏
p|`

(`−1)-e(p/`)

p .

It follows in particular that if p - `, or if p | ` and (` − 1) | e(p/`) then p is unramified in kz/k, and
therefore also (arguing via inertia groups) in K/k, since otherwise the ideal pk would be ramified in Kz/kz.
Thus, assuming (2), the only prime ideals p which can be ramified in K/k are with p | ` and (`− 1) - e(p/`).
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If p is split or inert in K/k, we check that f(pz|p) equals 1 or 2 respectively, showing (a) and (b). If p
is ramified, then (3.1) implies that (` − 1) | e(p/`) = e(p/p)e(p/`). Since (` − 1) - e(p/`) we conclude that
e(p/`) = n(`− 1)/2 with n odd. �

The following corollaries are immediate:

Corollary 2.17. Let p be a prime ideal of k below a prime ideal pz of Kz dividing some ai. If p is ramified
in the quadratic extension K/k then p is above `.

Corollary 2.18. In both the general and special cases, assume that for any prime ideal p of k above ` the
absolute ramification index e(p/`) is not divisible by (` − 1)/2. Then all the ideals ai defined above are
coprime to `.

Note that for ` = 3 this corollary is empty, but the conclusion of the corollary always holds when
` > 2[k : Q] + 1, and in particular when k = Q and ` ≥ 5.

Proposition 2.19. There exists an ideal aα of K such that
∏

0≤i≤`−2 ai = aαZKz . In addition:

(1) In the general (resp., special) case, aα is stable by τ and τ2 (resp., by τ).
(2) If either the assumption of Corollary 2.18 is satisfied (for instance when ` > 2[k : Q] + 1), or we are

in the special case with ` ≡ 1 (mod 4), then aα = a′αZK for some ideal a′α of k.

Proof. (1). In the general case, since τ(ai) = ai−1 we have
∏

0≤i≤`−2 ai = aαZKz with aα = NKz/K(a0), and

since τ2(ai) = ai+(`−1)/2, aα is stable by τ2. In the special case, since τ2(ai) = ai−2 we have
∏

0≤i<(`−1)/2 a2i =

NKz/K(a0)ZKz and
∏

0≤i<(`−1)/2 a2i+1 = NKz/K(a1)ZKz , so that
∏

0≤i<`−1 ai = aαZKz with aα = NKz/K(a0a1)

an ideal of K, and since τ(ai) = ai+(`−3)/2, aα is stable by τ .

(2). In the special case with ` ≡ 1 (mod 4) then (`− 3)/2 is odd, so since a1 = τ (`−3)/2(a0) it follows that
τ(NKz/K(a0)) = NKz/K(a1), so that

∏
0≤i≤`−2 ai = NKz/k(a0)ZKz = a′αZKz with a′α an ideal of the base

field k. On the other hand, if the assumption of Corollary 2.18 is satisfied then aα is coprime to `, hence by
Corollary 2.17 it is not divisible by any prime ramified in K/k, and since it is stable by Gal(K/k) it comes
from an ideal a′α of k. �

3. Hecke Theory: Conductors

Our goal (see Theorem 3.8) is to give a usable expression for the “conductor” f(L) in terms of the
fundamental quantities (a0, · · · , a`−2, u) given by Proposition 2.8, where we recall that the conductor of the

C`-extension N/K is equal to f(N/K) = f(L)ZK and that d(L/k) = d(K/k)(`−1)/2f(L)`−1.
In this section we will denote by p a prime ideal of k over `, by p a prime ideal of K above p, by pz a

prime ideal of Kz above p, and in the general case, by pk a prime ideal of kz below pz.
We first recall from [10] and [11] some results concerning the cyclotomic extensions kz/k and Kz/K.

Remark 3.1. By and large we stick to the notation of [11] except that the notation m(p) of [11] is the same
as M(p) here, which corresponds to numbers Aα, while our m(p) corresponds to numbers aα.

Proposition 3.2. As above, let p be a prime of k over `, and let e(p) and e(p) be the respective absolute
ramification indices over `. Then we have

(3.1) e(pz/p) =
`− 1

(`− 1, e(p))
and

e(pz/`)

`− 1
=

e(p)

(`− 1, e(p))
.

Proof. Immediate from Theorem 2.1 of [11]. �

Definition 3.3. Suppose that p, p, and pz are as above, so that e(pz/p) | (` − 1). Moreover, let α ∈
(K∗z/K

∗
z
`)[T ] be as in Proposition 2.4.
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(1) If pZK = p2 in K/k we set p1/2 = p, and if pZKz = p
e(pz/p)
z in Kz/K, we set pz = p1/e(pz/p).

(2) We say that an ideal p of k divides some Gal(Kz/k)-invariant ideal b of K (resp., of Kz) when

(pZK)1/e(p/p) (resp., (pZK)1/e(pz/p)) does, or equivalently when p (resp., p1/e(pz/p)) does, where this
last condition is independent of the choice of ideal p of K above p.

(3) If e is an integer, write r(e) for the unique integer such that e ≡ r(e) (mod `−1) and 1 ≤ r(e) ≤ `−1.
(4) We write

M(p) =
`e(pz/`)

`− 1
=

`e(p)

(`− 1, e(p))
∈ Z , m(p) =

M(p)

e(pz/p)
=
`e(p)

`− 1
.

(5) Denote by Dn the congruence x`/α ≡ 1 (mod ∗pnz ) in Kz.
(6) Define quantities Aα(p) and aα(p) as follows:

• If Dn is soluble for n = M(p), we set Aα(p) = M(p) + 1 and aα(p) = m(p).
• Otherwise, if n < M(p) is the largest exponent for which it is soluble, we set Aα(p) = n and we

define

aα(p) =
Aα(p)− r(e(p))/(`− 1, e(p))

e(pz/p)
=

⌈
Aα(p)

e(pz/p)

⌉
− 1 ∈ Z .

Remarks 3.4. (1) The quantity r(e(p))/(`− 1, e(p)) = r(e(p))/(`− 1, r(e(p))) is an integer, and equals
1 when ` = 3 or when k = Q for instance, and the second equality for aα(p) is proved below.

(2) The notation Aα(p) and aα(p) (instead of Aα(pz) and aα(pz)) is justified by the following lemma:

Lemma 3.5. With the above assumptions, the solubility of Dn (the congruence x`/α ≡ 1 (mod ∗pnz )) is
independent of the ideal pz of Kz above p. In other words, using the notation of Definition 3.3, it is
equivalent to x`/α ≡ 1 (mod ∗pn/e(pz/p)) or to x`/α ≡ 1 (mod ∗pn/e(pz/p)).

Proof. If p′z is another ideal above p, there exists h = τ iτ j2 ∈ Gal(Kz/k) with p′z = h(pz) (resp., simply
h = τ i in the special case). Thus if x`/α ≡ 1 (mod ∗pnz ) we have h(x)`/h(α) ≡ 1 (mod ∗p′z

n). However,

since α ∈ (K∗z/K
∗
z
`)[T ], modulo `th powers we have τ(α) = αg and τ2(α) = α−1 (resp., τ(α) = α−g), hence

h(α) = α(−1)jgiγ` (resp., h(α) = α(−1)igiγ`) for some γ ∈ K∗z . We deduce that y`/α ≡ 1 (mod ∗p′z
n), with

y = (h(x)/γ)(−1)
jg−i (resp., y = (h(x)/γ)(−1)

ig−i), proving the lemma. �

Proposition 3.6. (1) We have ` - Aα(p), and if Aα(p) ≤ M(p) (equivalently, if Aα(p) ≤ M(p) − 1)
then

Aα(p) ≡ e(p)

(`− 1, e(p))

(
mod

`− 1

(`− 1, e(p))

)
.

(2) We have aα(p) = m(p) if Aα(p) = M(p) + 1, and otherwise

0 ≤ aα(p) ≤ `e(p)

`− 1
− `− 1 + r(e(p))

`− 1
<
`e(p)

`− 1
− 1 = m(p)− 1 .

Proof. (1) follows from Proposition 3.8 of [11], and (2) follows from the definitions and from (3.1). �

Remark 3.7. As mentioned in [12], the congruence (1), or equivalently the integrality of aα(p) (when
Aα(p) < M(p)) comes from a subtle although very classical computation involving higher ramification groups;
see Proposition 3.6 of [11] along with Chapter 4 of [36].

We can now quote the crucial result from [11] which gives the conductor of the extension N/K:

Theorem 3.8. [11, Theorem 3.15] Assume that (a0, . . . , a`−2) are as in Proposition 2.8, so that
∏

0≤i≤`−2 ai =

aαZKz with aα an ideal of K stable by τ2 (resp., by τ in the special case), and sometimes coming from k
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(see Proposition 2.19). Then the conductor of the associated field extension N/K is given as follows:

f(N/K) = `aα

∏
p|` p

de(p)/(`−1)e∏
p|` , p-aα p

daα(p)e
.

Remark 3.9. One can now draw additional conclusions about the aα(p). For example, suppose that p is
a prime ideal k above ` with pZK = p2, p - aα and aα(p) < m(p). Then vp(f(N/K)/`) ≡ 0 (mod 2), as
f(N/K) = f(L)ZK for an ideal f(L) of k, and it follows from the theorem and Proposition 3.6 that

(3.2) aα(p) ≡ de(p)/(`− 1)e (mod 2).

Definition 3.10. Let a equal either m(p), or an integer with 0 ≤ a < m(p)− 1, and define

h(0, a, p) =

{
0 if (`− 1) - e(p) or a = m(p) ,

1 if (`− 1) | e(p) and a < m(p) ;

h(1, a, p) =

{
1 if (`− 1) - e(p) ,

2 if (`− 1) | e(p) .

Remark 3.11. Note that if ` > 2[k : Q] + 1, for instance when k = Q and ` ≥ 5, we have e(p) < ` − 1 so
(`− 1) - e(p). Thus in this case we simply have h(ε, a, p) = ε, independently of a and p. We will also see in
Remark 4.7 that a number of other formulas simplify.

Lemma 3.12. Let p be a prime ideal of K above ` and denote by Cn the congruence x`/α ≡ 1 (mod ∗pn)
in Kz. Then aα(p) is equal to the unique value of a as in the previous definition such that Cn is soluble for
n = a+h(0, a, p) and not soluble for n = a+h(1, a, p), where this last condition is ignored if a+h(1, a, p) >
m(p).

Proof. By Lemma 3.5 the solubility of Dn is equivalent to that of Cn/e(pz/p). If a = aα(p) = m(p), then Dn

is soluble for n = `e(pz/`)/(`− 1), which is equivalent to Cm(p) = Ca as desired.
If a = aα(p) < m(p), we have Aα(p) = ae(pz/p) + r(e(p))/(` − 1, e(p)), and Proposition 3.6 (1) implies

that the solubility of Dn for n = Aα(p) is equivalent to that of Dn′ when Aα(p) − (` − 1)/(` − 1, e(p)) <
n′ ≤ Aα(p). If (` − 1) - e(p) we have r(e(p)) < ` − 1 and choose n′ = ae(pz/p), while if (` − 1) | e(p) we
choose n′ = n = ae(pz/p) + 1. Thus the solubility of DAα(p) and Dn′ is equivalent to that of Cn′′ , where
n′′ = n′/e(pz/p) = a+ h(0, a, p) by definition of h(0, a, p). (Recall that e(pz/p) = 1 when (`− 1) | e(p).)

Furthermore, since Dn is not soluble for n = Aα(p)+1, we also have that Dn′ is not soluble, where n′ = n
if (`− 1) | e(p) and n′ = a(pz/p) + (`− 1)/(`− 1, e(p)) ≥ n′ otherwise. The solubility of Dn′ is equivalent to
that of Cn′′ where n′′ = n′/e(pz/p) = a+ h(1, a, p), as desired.

Finally, we conclude by checking that the conditions are mutually exclusive.
�

4. The Dirichlet Series

Since f(N/K) = f(L)ZK for some ideal f(L) of k, we have NK/Q(f(N/K)) = Nk/Q(f(L))2. To emphasize
the fact that we are mainly interested in the norm from k/Q, we set the following definition (norms from
extensions other than k/Q will always indicate the field extension explicitly):

Definition 4.1. If a is an ideal of k, we set N (a) = Nk/Q(a), while if a is an ideal of K, we set

N (a) = NK/Q(a)1/2 .

In particular, for each ideal a of k we have N (a) = N (aZK).
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Recall that we set

Φ`(K, s) =
1

`− 1
+

∑
L∈F`(K)

1

N (f(L))s
,

and f(N/K) = f(L)ZK is given by Theorem 3.8. By Proposition 2.4, we have

(`− 1)Φ`(K, s) =
∑

α∈(K∗z /K∗z `)[T ]

1

N (f(L))s
,

where L = Kz(
√̀
α)G (including α = 1 corresponding to L = KG

z = k with f(L) = Zk and N (f(L)) = 1), so
by Proposition 2.8, we have

(`− 1)Φ`(K, s) =
∑

(a0,...,a`−2)∈J

∑
u∈S`(Kz)[T ]

1

N (f(L))s
,

where J is the set of (` − 1)uples of ideals satisfying condition (a) of Proposition 2.8, and f(L) is the
conductor of the extension corresponding to (a0, . . . , a`−2, u). Thus, replacing f(L) by the formula given by

Theorem 3.8, recalling that
∏

p|`N (p)e(p) = `[k:Q], and writing

e(p) = (de(p)/(`− 1)e − 1)(`− 1) + r(e(p)) ,

we obtain

(4.1) (`− 1)Φ`(K, s) = `−
`
`−1

[k:Q]s
∏
p|`

N (p)−
`−1−r(e(p))

`−1
s

∑
(a0,...,a`−2)∈J

Sα(s)

N (aα)s
,

where

Sα(s) =
∑

u∈S`(Kz)[T ]

∏
p|`
p-aα

N (p)daαu(p)es ,

and where α is any element of K∗z such that α ∈ (K∗z/K
∗
z
`)[T ] and q`0

∏
0≤i≤`−2 a

gi

i = αZKz for some ideal
q0.

Definition 4.2. For α ∈ K∗z and an ideal b of Kz, we introduce the function

fα(b) = |{u ∈ S`(Kz)[T ], x`/(αu) ≡ 1 (mod ∗b) soluble in Kz}| ,

with the convention that fα(b) = 0 if b - (1− ζ`)`ZKz .

Let pi for 1 ≤ i ≤ n = n(α) be the prime ideals of k above ` and not dividing aα, and for each i let ai be

such that either ai = m(pi), or 0 ≤ ai ≤ m(pi)− (`−1)+r(e(pi))
`−1 = dm(pi)e − 2 with ai ∈ Z, where as usual pi

is an ideal of K above pi, and let A be the set of such (a1, . . . , an). Noting that thanks to the convention of

Definition 4.1 we have
∏

pi|pi N (pi) = N (pi)
1/e(pi/pi), we thus have

(4.2) Sα(s) =
∑

(a1,...,an)∈A

∏
1≤i≤n

N (pi)
daies/e(pi/pi)

∑
u∈S`(Kz)[T ]
∀i, aαu(pi)=ai

1 .

By Lemma 3.12, we have aαu(pi) ≥ ai if and only if u is counted by fα(pbii ), where bi = ai+h(0, a, pi), and

we rewrite pbii = p
bi/e(pi/pi)
i . Let B(α) be the set of n-uples (b1, . . . , bn) with 0 ≤ bi ≤ m(pi), bi ∈ Z∪{m(pi)}.

By inclusion-exclusion we obtain the following:
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Lemma 4.3. We have

(4.3) Sα(s) =
∑

(b1,...,bn)∈B(α)

fα

 ∏
1≤i≤n

p
bi/e(pi/pi)
i

 ∏
1≤i≤n

(
N (pi)

dbies/e(pi/pi)Q(p
bi/e(pi/pi)
i , s)

)
,

where Q(pb/e(p/p), s) is defined as follows. Let as usual p be an ideal of K above p and define q = N (p)1/e(p/p).
Then if b = m(p) or 0 ≤ b < m(p) with b ∈ Z:

(1) If (`− 1) - e(p) we set

Q(pb/e(p/p), s) =


1 if b = 0 ,

1− 1/qs if 1 ≤ b ≤ dm(p)e − 2 ,

−1/qs if b = dm(p)e − 1 ,

1 if b = m(p) .

(2) If (`− 1) | e(p) we set

Q(pb/e(p/p), s) =


0 if b = 0 ,

1/qs if b = 1 ,

1/qs − 1/q2s if 2 ≤ b ≤ m(p)− 1 ,

1− 1/q2s if b = m(p) .

Remark 4.4. There are conditions on the ai, e.g. (3.2), such that the inner sum in (4.2) vanishes for
impossible choices of the ai. One can use this to prove alternate versions of Lemma 4.3 that are nonobviously
equivalent. In particular, if (` − 1) | e(p) then one can restrict to bi ∈ 2Z ∪ {m(pi)} with suitably modified

Q(pb/e(p/p), s).

Definition 4.5. (1) We let B be the set of formal products of the form

b =
∏
pi|` p

bi/e(pi/pi)
i , where the bi are such that 0 ≤ bi ≤ m(pi) and bi ∈ Z ∪ {m(pi)}.

(2) We will consider any b ∈ B as an ideal of K, where by abuse of language we accept to have fractional
powers of prime ideals of K, and we will set bz = bZKz , which is a true ideal of Kz stable by τ , and
also by τ2 in the general case.

(3) If b ∈ B as above, we set

dNe(b) =
∏
pi|b

N (pi)
dbie/e(pi/pi) and P (b, s) =

∏
pi|b

Q̃(p
bi/e(pi/pi)
i , s) .

where Q̃(pb/e(p/p), s) := Q(pb/e(p/p), s) except in the case (` − 1) | e(p) and b = 0, where we set

Q̃(pb/e(p/p), s) = 1.

We thus obtain

(4.4)
∑

(a0,...,a`−2)∈J

Sα(s)

N (aα)s
=
∑
b∈B
dNe(b)sP (b, s)

∑
(a0,...,a`−2)∈J

(aα,b)=1
p-b and (`−1)|e(p)⇒p|aα

fα(b)

N (aα)s
.

The case p - b, (`− 1) | e(p), and p - aα is precisely that for which Q(pb/e(p/p), s) = 0 and Q̃(pb/e(p/p), s) = 1.

By excluding this case we may substitute Q̃ for Q with Q̃(p0, s) = 1.
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Definition 4.6. (1) For b as above we define

re(b) =
∏

p|`ZK , p-b
(`−1)|e(p)

p .

(2) We set d` =
∏
p∈D` p (see Definition 2.12).

Remark 4.7. Since e(p) = e(p/p)e(p) ≤ 2[k : Q], we note that if ` > 2[k : Q]+1 then re(b) is always trivial.
This will in particular be the case for k = Q and ` ≥ 5, which we will study later, and if we specialized to this
case now we would avoid some of the subsequent complications. In particular, in view of the next lemma,
when re(b) is trivial all the ideals ai and aα are coprime to `.

Lemma 4.8. For each aα appearing in the inner sum of (4.4) we have

(4.5) (aα, `ZK) = re(b) =
∏
p∈D`
(p,b)=1

∏
p|p

p ,

so that re(b) | d`.
Additionally, in the special case with ` ≡ 1 (mod 4) we have re(b) =

∏
p∈D`
(p,b)=1

p.

Proof. If p - b and (` − 1) | e(p) then clearly p | aα. Conversely, let p | aα be above `. Since (aα, b) = 1
we know that p - b. If we had (` − 1) - e(p), Proposition 3.2 would imply that e(pz/p) > 1, contradicting
Corollary 2.11. This proves the first equality of (4.5), and the second equality and formula in the special
case follow similarly. �

Thus we obtain

(4.6)
∑

(a0,...,a`−2)∈J

Sα(s)

N (aα)s
=

∑
b∈B

re(b)|d`

dNe(b)sP (b, s)
∑

(a0,...,a`−2)∈J
(aα,`ZK)=re(b)

fα(b)

N (aα)s
.

To compute fα(b) we set the following definition:

Definition 4.9. For any ideal b ∈ B, and for any subset T of F`[G], we set

Sbz(Kz)[T ] = {u ∈ S`(Kz)[T ], x`/u ≡ 1 (mod ∗bz) soluble} ,

where u is any lift of u coprime to bz, and the congruence is in Kz.

Lemma 4.10. Let (a0, . . . , a`−2) satisfy condition (a) of Proposition 2.8, suppose that α satisfies the condi-

tion described before Definition 4.2, and recall that we set a =
∏
i a
gi

i . We have

fα(b) =

{
|Sbz(Kz)[T ]| if a ∈ Clbz(Kz)

` ,

0 otherwise.

Proof. The lemma and its proof are a direct generalization of Lemma 5.3 of [12], and we omit the details. �

5. Computation of |Sbz(Kz)[T ]|

In this section we compute the size of the group Sbz(Kz)[T ] appearing in Lemma 4.10, as well as several
related quantities.
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Lemma 5.1. Set Zbz = (ZKz/bz)∗. Then

|Sbz(Kz)[T ]| = |(U(Kz)/U(Kz)
`)[T ]||(Clbz(Kz)/Clbz(Kz)

`)[T ]|
|(Zbz/Z

`
bz

)[T ]|
,

and in particular
|S`(Kz)[T ]| = |(U(Kz)/U(Kz)

`)[T ]||(Cl(Kz)/Cl(Kz)
`)[T ]| .

Proof. This is a minor variant of Corollary 2.13 of [11], proved in the same way. �

The quantity |(U(Kz)/U(Kz)
`)[T ]| is given by the following lemma.

Lemma 5.2. Assume that ` > 3, the case ` = 3 being treated in [12, Lemma 5.4]. For any number field M ,
write rk`(U(M)) := dimF`(U(M)/U(M)`), and denote by r1(M) and r2(M) the number of real and pairs of
complex embeddings of M .

(1) For any number field M we have

rk`(U(M)) =

{
r1(M) + r2(M)− 1 if ζ` /∈M ,

r1(M) + r2(M) if ζ` ∈M .

(2) We have |(U(Kz)/U(Kz)
`)[T ]| = `RU(K), where

RU(K) :=


r2(K)− r2(k) in the general case,

r1(k) + r2(k) in the special case with ` ≡ 3 (mod 4) ,

r2(k) in the special case with ` ≡ 1 (mod 4) .

(3) In particular, if k = Q we have RU(K) = r2(K) in all cases.

Proof. (1) is Dirichlet’s theorem, and (3) is a consequence of (2). To prove (2) in the general case, where
T = {τ2 + 1, τ − g}, we apply the exact sequence

(5.1) 1 −→ U(kz)

U(kz)`
[τ − g] −→ U(Kz)

U(Kz)`
[τ − g] −→ U(Kz)

U(Kz)`
[τ2 + 1, τ − g] −→ 1 ,

where the last nontrivial map sends ε to τ2(ε)/ε. Surjectivity follows from Lemma 2.3, and (τ2+1)(τ2−1) = 0
implies that the two nontrivial maps compose to zero. Finally, suppose ε ∈ U(Kz) satisfies τ2(ε) = εη` for
some η ∈ Kz. Applying τ2 to both sides we see that ητ2(η) = ζa` for some a, and replacing η with η1 = ηζb`
with a + 2b ≡ 0 (mod `), we obtain η1τ2(η1) = 1 and τ2(ε) = εη`1. By Hilbert 90 there exists η2 with
η1 = η2/τ2(η2), so that ε1 = εη`2 satisfies τ2(ε1) = ε1, in other words ε1 ∈ kz, proving exactness of (5.1).

By a nontrivial theorem of Herbrand (see Theorem 2.3 of [11]), we have |(U(Kz)/U(Kz)
`)[τ−g]| = `r2(K)+1

and |(U(kz)/U(kz)
`)[τ − g]| = `r2(k)+1, establishing (2) in the general case.

In the special case, with T = {τ + g} = {τ − g(`+1)/2}, (2) follows directly from Herbrand’s theorem
applied to the extension kz/k = Kz/k, for which τ generates the Galois group. �

Note that for ` = 3 the same is true except that in the special case we have RU(K) = r1(k) + r2(k)− 1.
This follows from the shape of [11, Theorem 2.3], or may be easily verified from [12, Lemma 5.4].

We now need to compute |(Zbz/Z
`
bz

)[T ]|.

Lemma 5.3. Let b ∈ B satisfy bz | (1− ζ`)`, and define cz =
∏

pz⊂Kz
pz |bz

p
dvpz (bz)/`e
z . We have

|(Zbz/Z
`
bz)[T ]| = |(cz/bz)[T ]| ,

the latter being considered as an additive group.
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Proof. See Proposition 2.6 and Theorem 2.7 of [11], or Lemma 1.5.6 of [29]. �

Theorem 5.4. We have in the general case

(5.2) |(cz/bz)[τ − gj ]| =
∏
p|bz

NK/Q(p)xj(p) ,

where

(5.3) xj(p) =
⌈
vp(b)− je(p)

`− 1

⌉
−
⌈de(pz/p)vp(b)/`e(`− 1, e(p))− je(p)

`− 1

⌉
.

In the special case, (5.3) holds with p and K replaced throughout by p and k respectively.
Finally, in the general case, then (5.3) is also true with respect to kz/k. In this case one must replace p,

K, bz, and cz respectively by p, k, bk := cz ∩ kz, and

(5.4) ck := cz ∩ Zkz =
∏

pk⊂kz
pk|bk

p
dvpk (bk)/`e
k .

Proof. This is the result at the bottom of [11, p. 177], applied to Kz/K, Kz/k, and kz/k respectively. As in

[11, Theorem 2.7] the result may be simplified if vp(b) is either an integer or equal to `e(p)
`−1 , and in particular

always in the general case with respect to Kz/K, but in other cases vp may be a half integer.
Finally, the equality in (5.4) is readily verified. �

Recall from [11, Theorem 2.1] and (3.1) that e(pz/p) = `−1
(`−1,e(p)) and e(pk/p) = `−1

(`−1,e(p)) . In the special

case, this theorem together with Lemma 5.3 gives the cardinality of (Zbz/Z
`
bz

)[T ] by choosing j = (`+ 1)/2.
In the general case we require the following additional lemma:

Lemma 5.5. Assume that we are in the general case and set ck = cz ∩ kz and bk = bz ∩ kz. We have

|(Zbz/Z
`
bz)[T ]| = |(cz/bz)[τ − g]|/|(ck/bk)[τ − g]| ,

where the two terms on the right-hand side are given by Theorem 5.4.

Proof. We have an exact sequence of F`[G]-modules

1 −→ cz
bz

[τ2 − 1][τ − g] −→ cz
bz

[τ − g] −→ cz
bz

[T ] −→ 1 ,

the last map sending x to x− τ2(x). It therefore suffices to argue that (cz/bz)[τ2−1] = (cz ∩kz)/(bz ∩kz): if
x ∈ cz satisfies τ2(x) = x+ y for some y ∈ bz, then applying τ2 we see that τ2(y) = −y, hence τ2(x+ y/2) =
x+ y/2. Moreover x+ y/2 ≡ x (mod bz), because 2 is invertible modulo ` hence modulo b. �

Definition 5.6. We set Gb = (Clbz(Kz)/Clbz(Kz)
`)[T ].

We conclude with one additional lemma which will be needed in the next section.

Lemma 5.7. In the general case set u = ι(τ2 + 1)ι(τ − g) and in the special case set u = ι(τ + g).

(1) The map I 7→ u(I) induces a surjective map from Clbz(Kz)/Clbz(Kz)
` to Gb, of which a section is

the natural inclusion from Gb to Clbz(Kz)/Clbz(Kz)
`.

(2) Any character χ ∈ Ĝb can be naturally extended to a character of Clbz(Kz)/Clbz(Kz)
` by setting

χ(I) = χ(u(I)), which we again denote by χ by abuse of notation.

(3) Let as usual a =
∏

0≤i≤`−2 a
gi

i with the ai satifying condition (a) of Proposition 2.8.

• In the general case and in the special case when ` ≡ 1 (mod 4), we have χ(a) = χ(a0)
−1;

• In the special case when ` ≡ 3 (mod 4), we have χ(a) = χ(a0a
g
1)(`−1)/2,
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where χ on the right-hand side is defined in (2).

Proof. (1) and (2) are immediate from Lemma 2.3. For (3), assume that we are in the special case. Using

Lemma 2.10 we have a2i = τ−2i(a0), a2i+1 = τ−2i(a1), and χ(τ2(I)) = χ(I)g
2
, so that

χ(a) =
∏

0≤i<(`−1)/2

χ(τ−2i(a0a
g
1))g

2i
=

∏
0≤i<(`−1)/2

χ(a0a
g
1) = χ(a0a

g
1)(`−1)/2 .

If in addition ` ≡ 1 (mod 4) we have a1 = τ (`−3)/2(a0) and χ(τ(I)) = χ(I−g), giving χ(a1) = χ(a0)
(−g)(`−3)/2

=

χ(a0)
−g(`−3)/2

and χ(ag1) = χ(a0), so χ(a0a
g
1)(`−1)/2 = χ(a0)

`−1 = χ(a0)
−1.

The general case of (3) is proved similarly, with ai = τ−i(a0).
�

6. Semi-Final Form of the Dirichlet Series

We can now put everything together, and obtain a complete analogue of the main theorem of [12]:

Theorem 6.1. Recall that for any (true or formal) ideal b of K as above we set Gb = (Clbz(Kz)/Clbz(Kz)
`)[T ].

We have

Φ`(K, s) =
`RU(K)

(`− 1)`
`
`−1

[k:Q]s

∏
p|`

N (p)−
(`−1−r(e(p))

`−1
s ·

·
∑
b∈B

re(b)|d`

(
dNe(b)

N (re(b))

)s P (b, s)

|(Zbz/Z
`
bz

)[T ]|
∑
χ∈Ĝb

F (b, χ, s) ,

where

F (b, χ, s) =
∏
p|re(b)
p∈D′`(χ)

(`− 1)
∏
p|re(b)

p∈D`\D`′(χ)

(−1)
∏

p∈D′(χ)

(
1 +

`− 1

N (p)s

) ∏
p∈D\D′(χ)

(
1− 1

N (p)s

)
,

and D′(χ) (resp. D′`(χ)) is the set of p ∈ D (resp. D`) such that χ(pz) = 1, where pz is any prime ideal of
Kz above p.

Proof. We begin with the formula for Φ`(K, s) given by (4.1) and (4.6). By Remark 2.9 we have a ∈
(Clbz(Kz)/Clbz(Kz)

`)[T ] with a =
∏

0≤i≤`−2 a
gi

i . Thus a ∈ Clbz(Kz)
` if and only if χ(a) = 1 for all characters

χ ∈ Ĝb. The number of such characters being equal to |Gb|, by orthogonality of characters and Lemmas
4.10, 5.1, and 5.2 we obtain

Φ`(K, s) =
`RU(K)

(`− 1)`
`
`−1

[k:Q]s

∏
p|`

N (p)−
`−1−r(e(p))

`−1
s
∑
b∈B

re(b)|d`

dNe(b)sP (b, s)

|(Zbz/Z
`
bz

)[T ]|
∑
χ∈Ĝb

H(b, χ, s) ,

with

H(b, χ, s) =
∑

(a0,··· ,a`−2)∈J ′
(aα,`ZK)=re(b)

χ(a)

N (aα)s
,

where aα was defined in Proposition 2.19, and J ′ is the set of (`−1)uples of coprime squarefree ideals of Kz,
satisfying condition (a) of Proposition 2.8, but now without the condition that the ideal class of a belongs
to Cl(Kz)

`, so satisfying the condition of Lemma 2.10.
Assume first that we are in the general case. By Lemma 2.10 we can replace the sum over J ′ by a

sum over ideals a0 of Kz. The conditions and quantities linked to a0 are then as follows:



20 HENRI COHEN AND FRANK THORNE

(a) The ideal a0 is a squarefree ideal of Kz such that τ (`−1)/2(a0) = τ2(a0).
(b) The ideals a0 and τ i(a0) are coprime for (`− 1) - i.
(c) If pz is a prime ideal of Kz dividing a0, p the prime ideal of K below pz, and p the prime ideal of k below

pz then by Corollary 2.11 we have p ∈ D∪D`. Conversely, if this is satisfied then the ideals ai = τ−i(a0)
must be pairwise coprime since otherwise aα would be divisible by some p2z which is impossible since p
is unramified in Kz/K.

(d) We have NKz/K(a0) = aα.

(e) By Lemma 5.7 we have χ(a) = χ−1(a0).

Thus if we denote temporarily by J ′′ the set of ideals a0 of Kz satisfying the first three conditions above,
we have

H(b, χ, s) =
∑

a0∈J ′′
(NKz/K(a0),`ZK)=re(b)

χ−1(a0)

N (NKz/K(a0))s
.

So that we can use multiplicativity, write a0 = cd, where c is the `-part of a0 and d is the prime to ` part
(recall that a0 is squarefree). The condition (NKz/K(a0), `ZK) = re(b) is thus equivalent toNKz/K(c) = re(b).
Thus H(b, χ, s) = ScSd with

Sc =
∑
c∈J ′′

NKz/K(c)=re(b)

χ−1(c)

N (NKz/K(c))s
and Sd =

∑
d∈J ′′

(NKz/K(d),`ZK)=1

χ−1(d)

N (NKz/K(d))s
.

Consider first the sum Sd. By multiplicativity we have Sd =
∏
p∈D Sd,p with

Sd,p =
∑

d|pZKz
τ (`−1)/2(d)=τ2(d)

χ−1(d)

N (NKz/K(d))s
.

As p is not above `, it is unramfied in K/k by Proposition 2.15 and we consider the remaining two cases:

(1) Assume that pZK = p, i.e, that p is inert in K/k. Since p is totally split in Kz/K we have
pZKz =

∏
0≤i≤`−2 τ

i(pz) for some prime ideal pz of Kz. Furthermore, since pz/pk (with our usual

notation) is split we have τ2(pz) 6= pz, and since p is stable by τ2, τ2(pz) is again above p, so we

deduce that τ2(pz) = τ (`−1)/2(pz).
Since d is squarefree and coprime to its Kz/K-conjugates, we see that d = ZKz or d = τ i(pz) for

some i, with N (NKz/K(d)) equal to 1 or N (p) respectively. In the latter case we have

(6.1) Sd,p = 1 +
∑

0≤i≤`−2

χ(pz)
−gi

N (p)s
= 1 +

∑
1≤j≤`−1

χ(pz)
j

N (p)s
,

so that Sd,p = 1 + (`− 1)/N (p)s if χ(pz) = 1, and Sd,p = 1− 1/N (p)s otherwise.

(2) If instead pZK = pτ2(p) is split in K/k, then similarly either d = ZKz or d = τ i(pzτ
`−1
2 τ2(pz)) for

some i and pz. We have that χ(τ (`−1)/2(τ2(pz))) = χ−1(τ2(pz)) = χ(pz), and hence obtain the same
result as above.

Consider now the sum Sc. By multiplicativity, since b is stable by τ2, and applying Lemma 4.8 we have

Sc =
1

N (re(b))s

∑
c∈J ′′

NKz/K(c)=re(b)

χ−1(c) =
1

N (re(b))s

∏
p∈D`

(p,b)=1

Sc,p ,
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with
Sc,p =

∑
c|pZKz

τ (`−1)/2(c)=τ2(c)
NKz/K(c)=

∏
p|p p

χ−1(c) .

Our analysis is essentially the same as before, except p can now be ramified in K/k and the possibility
c = ZKz is now excluded. In all cases we obtain that Sc,p = `− 1 if χ(pz) = 1 and −1 otherwise.

Putting everything together proves the theorem in the general case.

In the special case with ` ≡ 1 (mod 4) the proof is similar; condition (a) is absent and (d) becomes
NKz/k(a0) = N (aα). Imitating the inert case of the previous argument, we obtain the same results.

In the special case with ` ≡ 3 (mod 4), we replace the sum over J ′ by a sum over pairs (a0, a1) of
ideals of Kz satisfying suitable conditions:

• In place of (a), a0 and a1 are fixed by τ (`−1)/2.
• In place of (b), the ideals a0, a1, τ

2i(a0), and τ2i(a1) must all be coprime.
• In place of (d), we have NKz/K(a0a1) = N (aα).

• In place of (e), we have χ(a) = χ(a0a
g
1)(`−1)/2.

We must again consider all splitting types in K/k, and the arguments are similar. If p is inert, we compute
that

Sd,p = 1 +
∑

0≤i≤ `−3
2

χ(pz)
g2i·(`−1)/2

N (p)s
+

∑
0≤i≤ `−3

2

χ(pz)
g2i+1·(`−1)/2

N (p)s
,

equal to the same expression as before. If p is split, recall that by Proposition 2.19 aα must be stable by τ ;
the relevant computation is

χ(pzτ (`−1)/2(pz))
(`−1)/2 = χ(p1−g

(`−1)/2

z )(`−1)/2 = χ(pz)
−1,

and again we obtain the same results. For p ∈ D` the argument is similar, once again considering all three
cases and obtaining the same result. �

As mentioned in Remarks 3.11, if ` > 2[k : Q] + 1, and in particular if k = Q and ` ≥ 5, we always have
re(b) = (1). The theorem simplifies and gives the following:

Corollary 6.2. Keep the same notation, and assume that ` ≥ 2[k : Q] + 3, for instance that k = Q and
` ≥ 5. We have

Φ`(K, s) =
`RU(K)

(`− 1)`
`
`−1

[k:Q]s

∏
p|`

N (p)−
`−1−r(e(p))

`−1
s
∑
b∈B

dNe(b)sP (b, s)

|(Zbz/Z
`
bz

)[T ]|
∑
χ∈Ĝb

F (b, χ, s) ,

where

F (b, χ, s) =
∏

p∈D′(χ)

(
1 +

`− 1

N (p)s

) ∏
p∈D\D′(χ)

(
1− 1

N (p)s

)
.

In the general case, we now prove that the group Gb can be described in somewhat simpler terms, in
terms of the mirror field K ′ of K. (See also Theorems 9.1 and Theorem 9.7 for a further characterization.)

Proposition 6.3. There is a natural isomorphism

Clb(Kz)

Clb(Kz)`
[T ]→ Clb′(K

′)

Clb′(K ′)`
[τ − g],

where b′ = b ∩K ′.
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Moreover, using this isomorphism to regard a character χ of Clb(Kz)
Clb(Kz)`

[T ] as a character χ̃ of
Clb′ (K

′)
Clb′ (K

′)`
[τ−g],

the condition χ(pz) = 1 defining D(χ)∩D′`(χ) is equivalent to the condition χ̃(pK′) = 1 for the unique prime
pK′ of K ′ below pz.

Proof. The first statement is also proved in [13, Proposition 3.6], so we will be brief. As τ (`−1)/2τ2 acts

trivially on Gb, it can be checked that elements of Gb can be represented by an ideal of the form aτ2τ
(`−1)/2a,

which is of the form a′ZKz for some ideal a′ of K ′. We therefore obtain a well-defined injective map
Clb(Kz)
Clb(Kz)`

[T ]→ Clb′ (K
′)

Clb′ (K
′)`

[τ − g], which may easily be shown to be surjective as well.

The latter statement follows because the condition χ̃(pK′) = 1 is equivalent to χ(pK′ZKz) = 1, which is
easily seen to be equivalent to χ(pz) = 1 for any splitting type of pz|pK′ .

�

7. Specialization to k = Q

We now specialize all of the results of this paper to the case where the base field is k = Q, where we will
obtain more explicit results. Henceforth we assume that K = Q(

√
D) is a quadratic field with discriminant

D.
By definition, B = {1, (`), (`)`/(`−1)} in the general case with ` - D, and B = {1, (`)1/2, (`), (`)`/(`−1)} in

the special case or in the general case with ` | D. Equivalently we may write

(7.1) bz ∈
{
ZKz , (1− ζ`)(`−1)/2ZKz , (1− ζ`)`−1ZKz = `ZKz , (1− ζ`)`ZKz

}
,

with the second entry removed in the former case. Throughout, we use the notation (−,−,−,−) to describe
quantities depending on B, with asterisks denoting ‘not applicable’.

Proposition 7.1. We have that |(Zbz/Z
`
bz

)[T ]| is equal to (1, ∗, `, `) or (1, 1, `, `) for ` - D or `|D respectively,

unless ` = 3 in the special case, in which case |(Zbz/Z
3
bz

)[T ]| = (1, 1, 1, 3).

Proof. This follows from Theorem 5.4 and Lemma 5.5. In the general case we obtain

|(Zbz/Z
`
bz)[T ]| = (0, ∗, 2, 2)− (0, ∗, 1, 1) = (0, ∗, 1, 1) ,

|(Zbz/Z
`
bz)[T ]| = (0, 1, 2, 2)− (0, 1, 1, 1) = (0, 0, 1, 1) ,

depending on whether ` - D or `|D respectively; in the special case we obtain

|(Zbz/Z
`
bz)[T ]| = (0, 0, 1, 1) ,

|(Zbz/Z
`
bz)[T ]| = (0, 0, 0, 1) ,

depending on whether ` ≥ 5 or ` = 3 respectively. �

Recall that the mirror field of K = Q(
√
D) with respect to ` is the degree `−1 field K ′ = Q(

√
D(ζ`−ζ−1` )).

The following is immediate from the results of Section 2:

Lemma 7.2. Let p be a prime different from `.

• We have p ∈ D if and only if p ≡
(
D
p

)
(mod `).

• In the general case, this is equivalent to p splitting completely in K ′/Q.
• In the special case with ` ≡ 1 (mod 4), this is equivalent to p ≡ 1 (mod `).
• In the special case with ` ≡ 3 (mod 4), this is equivalent to p ≡ ±1 (mod `).

We come now to the analogue of Theorem 3.2 of [14]. The case ` = 3, which is slightly different, is treated
in loc. cit.:
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Theorem 7.3. Assume that ` ≥ 5 and let K = Q(
√
D). We have

Φ`(K, s) =
`r2(D)

`− 1

∑
b∈B

Ab(s)
∑
χ∈Ĝb

F (b, χ, s) ,

where the Ab(s) are given by the following table:

Condition on D A(1)(s) A
(
√

(−1)(`−1)/2`)
(s) A(`)(s) A(``/(`−1))(s)

` - D `−2s 0 −`−2s−1 1/`

` | D `−3s/2 `−s − `−3s/2 −`−s−1 1/`

F (b, χ, s) =
∏

p≡(Dp) (mod `), p6=`

(
1 +

ωχ(p)

ps

)
,

where we set:

ωχ(p) =

{
`− 1 if χ(pz) = 1

−1 if χ(pz) 6= 1 ,

where as usual pz is any ideal of Kz above p.

Proof. The computation is routine, given the following consequences of our previous results:

• We have k = Q so `
`
`−1

[k:Q]s = ``s/(`−1).
• The factor

∏
p|`N (p)... is equal to `−(`−2)s/(`−1)) if ` - D and to `−(`−3)s/(2(`−1)) if ` | D. Multiplied

by the first factor this gives `−2s if ` - D and `−3s/2 if ` | D.

• We have `RU(K) = `r2(D) by Lemma 5.2, with r2(D) := r2(Q(
√
D)).

• By Definitions 4.5 and 4.1, we have dNe(b) = (1, ∗, `, `2) and dNe(b) = (1, `1/2, `, `3/2) for ` - D and
` | D respectively.
• As already mentioned, if k = Q and ` > 3 we have re(b) = (1), so the terms and conditions involving
re(b) disappear (in other words we use Corollary 6.2).
• By Lemma 7.2, we have p ∈ D if and only if p ≡

(
D
p

)
(mod `) and p 6= `, and D` = ∅ when ` 6= 3 by

what we have just said.
• By Lemma 4.3 and Definition 4.5 of P (b, s), when ` - D and ` | D respectively. we have P (b, s) =

(1, ∗,−`−s, 1), and P (b, s) = (1, 1− `−s/2,−`−s/2, 1) for ` - D respectively for the usual sequence of
b.
• The values of |(Zbz/Z

`
bz

)[T ]| are given in Proposition 7.1.

�

Corollary 7.4. Assume that ` ≥ 5, and set L`(s) = 1 + (` − 1)/`2s if ` - D and L`(s) = 1 + (` − 1)/`s if
` | D. There exists a function φD(s) = φD,`(s), holomorphic for <(s) > 1/2, such that∑

L∈F`(K)

1

f(L)s
= φD(s) +

1

(`− 1)`1−r2(D)
L`(s)

∏
p≡(Dp) (mod `), p6=`

(
1 +

`− 1

ps

)
.

Proof. Same as in Proposition 7.5 of [12]: The main term is the contribution of the trivial characters, and

φD(s) is the contribution of the nontrivial characters: we first regard each χ ∈ Ĝb as a character of
Clb′ (K

′)
Clb′ (K

′)`

by Proposition 6.3 and then by setting χ equal to 1 on the orthogonal complement of
Clb′ (K

′)
Clb′ (K

′)`
[τ − g]. By

the previous lemma, the primes occurring in the product are precisely those for which p is totally split in

K ′. Therefore, for each set of nontrivial characters χ, χ2, . . . , χ`−1 ∈ Ĝb, the sum of products F (b, χ, s) may
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be written as g(s) +
∑

χ L(s, χ), where L(s, χ) is the (holomorphic) Hecke L-function associated to χ, and

g(s) is a Dirichlet series supported on squarefull numbers, absolutely convergent and therefore holomorphic
in <(s) > 1/2. Therefore φD(s) is holomorphic in <(s) > 1/2 as well. We also note that the product of
the main term may similarly be written as h(s) +L(s, ω0), where ω0 is the trivial Hecke character, and h(s)
satisfies the same properties as g(s).

The ` = 3 case is slightly different due to the nontriviality of re(b); see [12]. �

This brings us to our asymptotic formulas:

Corollary 7.5. Assume that ` ≥ 5 and denote by M`(D;X) the number of L ∈ F`(Q(
√
D)) such that

f(L) ≤ X. Set c1(`) = 1/((`− 1)`1−r2(D)), c2(`) = (`2 + `− 1)/`2 when ` - D or c2(`) = 2− 1/` when ` | D.

(1) In the general case, or in the special case with ` ≡ 1 (mod 4), for any ε > 0 we have

M`(D;X) = C`(D)X +OD(X1− 2
`+3

+ε) , with

C`(D) = c1(`)c2(`)Ress=1

∏
p≡(Dp) (mod `)

(
1 +

`− 1

ps

)
,

and in the special case the product is equivalently over p ≡ 1 (mod `).
(2) In the special case with ` ≡ 3 (mod 4), for any ε > 0 we have

M`(D;X) = C`(D)(X log(X) + C ′`(D)) +OD(X1− 2
`+3

+ε) , with

C`(D) = c1(`)c2(`) lim
s→1+

(s− 1)2
∏

p≡±1 (mod `)

(
1 +

`− 1

ps

)
,

and C ′`(D) can also be given explicitly if desired.

Proof. In the general case, using the same proof as in [12], we see that the result follows, with C`(D) equal
to the residue at s = 1 of Φ`(K, s). Note that since we assume that ` ≥ 5, the condition e(p) = f(p) = 1
implies that p 6= `, otherwise it must simply be added. Note the marked difference in the asymptotics when
` ≡ 1 (mod 4) and ` ≡ 3 (mod 4).

We briefly recall how to obtain the error term. By the proof of Corollary 7.4, it equals (up to an implied
constant depending on D and `) the error made in estimating partial sums of Hecke L-functions of degree
`− 1.

We do this in the standard way, subject to the limitation that we may not shift any contour to <(s) ≤ 1/2.
We have by Perron’s formula, for each Hecke L-function ξ(s) =

∑
n a(n)n−s and any c > 1,∑

n<X

a(n) =
1

2πi

∫ c+i∞

c−i∞
ξ(s)

Xs

s
ds ,

and we shift the portion of the contour from c− iT to c+ iT to <(s) = σ for σ ∈ (1/2, 1) and T > 0 to be

determined. By convexity we have |ξ(s)| � T
`−1
2

(1−σ+ε), and choosing c = 1 + ε, σ = 1/2 + ε our integral

is � T
`−1
2

( 1
2
+2ε)X

1
2
+ε + X1+2ε

T ; then choosing T = X
2
`+3 we obtain an error term of X1− 2

`+3
+ε. �

In a separate paper by the first author [9], one explains how to compute the constants C`(D) to high
accuracy (100 decimal digits, say) for reasonably small values of |D|. For example, we have

C3(−3) = 0.0669077333013783712918416 · · · , C3(−4) = 0.1362190676241212841449867 · · · .
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Writing N±D`(X) for the number of degree ` fields L with Galois group D`, |Disc(L)| ≤ X, and whose
quadratic resolvent is respectively real or imaginary, it is natural to ask whether we can obtain estimates
for N±D`(X). A plausible guess is that for some C` > 0 we have

(7.2) N−D`(X) ∼ C`X2/(`−1) and N+
D`

(X) ∼ C`
`
X2/(`−1) .

By Davenport–Heilbronn this is known for ` = 3 with C3 = 1/(4ζ(3)), but it is unclear how to recover
this value of C3, even heuristically, from our work. As such we still seem to be far from a proof of (7.2).

8. Study of the Groups Gb

In this section, where we continue to assume that k = Q and also assume that ` ≥ 5, we study the groups
Gb appearing in Theorem 7.3. In particular, each Euler product appearing in Theorem 7.3 corresponds to
a character of Gb, and so we want to study the size of this group.

We are indebted to Hendrik Lenstra for help in this section. This was not done in [12], but much of this
was done in our paper [13] with Rubinstein-Salzedo on the Ohno–Nakagawa relation. Accordingly we give
only a brief account of those results which are proved there.

We recall a few of the important notations used previously:

• Kz is an abelian extension of Q containing the `th roots of unity, with G = Gal(Kz/Q) = 〈τ, τ2〉 or
〈τ〉 in the general and special cases respectively.

• As in Proposition 2.4, Nz = Kz(
√̀
α) is a cyclic extension, for which we wrote αZKz = q`

∏
0≤i≤`−2 a

gi

i

and (in Proposition 2.19)
∏

0≤i≤`−2 ai = aαZKz for an ideal aα of K.

• We recall the possibilities for b (equivalently, bz) from (7.1), and we continue to use the notation
(−,−,−,−) for quantities depending on b.

For any b as in (7.1) we define b∗ := (1− ζ`)`/bz.
Proposition 8.1. With the notation above, we have f(Nz/Kz) | bz if and only if α ∈ Sb∗(Kz).

Proof. This is very classical, and essentially due to Kummer and Hecke: for instance, by Theorem 3.7 of [11]
we have

f(Nz/Kz) = (1− ζ`)`aα/
∏

pz |`, pz -aα

pAα(pz)−1z .

Thus, since aα is coprime to the product then f(Nz/Kz) | (1 − ζ`)` if and only if aα = ZK , i.e., if and only
if α is a virtual unit. If this is the case, then f(Nz/Kz) | bz if and only if the product is a multiple of
(1 − ζ`)`/bz = b∗, and by the definition of Aα and the congruence in Proposition 3.6, this is equivalent to
the solubility of the congruence x`/α ≡ 1 (mod ∗b∗), hence to α ∈ Sb∗(Kz). �

Theorem 8.2. [13, Corollary 3.2] Writing Cb := Clbz(Kz)/Clbz(Kz)
`, so that Gb = Cb[T ], and µ` for the

group of `th roots of unity, there exists a perfect, G-equivariant pairing of F`[G]-modules

Cb × Sb∗(Kz) 7→ µ` .

Proof. This is the Kummer pairing: given a ∈ Cb, let σa denote its image under the Artin map; given
α ∈ Sb∗(Kz), let α be any lift; then define the pairing by (a, α) 7→ σa(

√̀
α)/
√̀
α ∈ µ`. �

Corollary 8.3. [13, Corollary 3.3 (in part)] In the general case, where T = {τ − g, τ2 + 1}, define T ∗ =
{τ − 1, τ2 + 1}, and in the special case, where T = {τ + g}, define T ∗ = {τ + 1}. Then we have a perfect
pairing

Gb × Sb∗(Kz)[T
∗] 7→ µ` .

In particular, we have
|Gb| = |Sb∗(Kz)[T

∗]| .
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Proof. Recalling that τ(ζ`) = ζg` , for any j the preceding corollary yields a perfect pairing

Cb[τ − gj ]× Sb∗(Kz)[τ − g1−j ] 7→ µ` .

We conclude by taking j = 1 and j = (`+ 1)/2 in the general and special cases respectively. �

Proposition 8.4. In the special case, we have Cl(Qz)/Cl(Qz)
`[τ + 1] = {1} .

Proof. We first show that there exists an isomorphism

Cl(Qz)/Cl(Qz)
`[τ + 1] ' Cl(K)/Cl(K)`[τ + 1] .

By Lemma 2.3 (which also applies to t = τ + 1), the left side consists of those classes which may be
represented by ideals of the form NQz/K(a)/τ(NQz/K(a)). We therefore obtain a well-defined, injective map

to Cl(K)/Cl(K)`[τ + 1]. Any ideal in the target space may be represented by an ideal of the form c/τ(c),

which is equivalent to (c/τ(c))(`−1)
2
, and c(`−1)

2
= NQz/K(c2(`−1)ZQz), so that the map is surjective as well.

Now it suffices to show that ` - h(±`), where h(D) denotes the class number of Q(
√
D), and this follows

from the classical and easy fact that h(±`) < ` for all prime `. �

Remark 8.5. For ` ≡ 3 (mod 4) it is also possible to prove the proposition via the Herbrand-Ribet theorem
and a congruence for Bernoulli numbers.

Now suppose that ` ≡ 1 (mod 4). Then the Ankeny-Artin-Chowla conjecture (AAC) [1, 30] states that if

ε = (a + b
√
`)/2 is the fundamental unit of Q(

√
`), then ` - b. We will use the statement of the conjecture

directly, but we note that Ankeny and Chowla [2] and Kiselev [24] proved that it is equivalent to the condition
` - B(`−1)/2, which is trivially true if ` is a regular prime, a result first proved by Mordell [30]. It has been

verified for ` ≤ 2 ·1011 by van der Poorten, te Riele, and Williams [35], but as mentioned in the introduction,
on heuristic grounds it it probably false.

Lemma 8.6. Suppose that the AAC conjecture is true for `. Then the congruence x` ≡ ε (mod (1−ζ)kZQz)
is solvable for k = (`− 1)/2, and not for any larger value of k.

Proof. Write ε = (a+b
√
`)/2 with a, b in Z. Note first that (1−ζ)(`−1)/2ZQz =

√
`ZQz , and ε ≡ a/2 ≡ c ≡ c`

(mod
√
`ZK) with c ≡ a/2 (mod `), so the congruence is indeed solvable with k = (`− 1)/2. Assume that

it is soluble for a strictly larger k, hence modulo
√
`(1 − ζ)ZQz . If x =

∑
0≤i≤`−2 aiζ

i with ai ∈ Z (or

even in Z`), we have x` ≡
∑

0≤i≤`−2 ai (mod `), so x` ≡ m (mod `) for some integer m. Thus, if x` ≡ ε

(mod
√
`(1−ζ)ZQz) we have a+b

√
` ≡ 2m (mod

√
`(1−ζ)ZQz). In particular a ≡ 2m (mod

√
`), and since

they are both integers we deduce that a ≡ 2m (mod `), so our congruence gives b
√
` ≡ 0 (mod

√
`(1−ζ)ZQz),

i.e., b ≡ 0 (mod (1 − ζ)ZQz). Again since b is an integer this implies that ` | b, contradicting AAC and
proving (1). �

Remark 8.7. If AAC is false for `, then the congruence is soluble for all k: it may trivially be solved for
k = 3(`− 1)/2 with x ∈ Z, and then a Newton-Hensel iteration as in [8, Lemma 10.2.10] settles the matter.

We now return to the groups Sb∗(Kz)[T
∗].

Proposition 8.8. (1) In the general case we have Sb∗(Kz)[T
∗] ' Sb∗∩K(K).

(2) In the special case with ` ≡ 3 (mod 4), we have Sb∗(Kz)[T
∗] = {1} for all b.

(3) In the special case with ` ≡ 1 (mod 4), if the Ankeny-Artin-Chowla conjecture is true for `, then
we have |Sb∗(Kz)[T

∗]| = (1, 1, `, `) for b as in (7.1). If Ankeny-Artin-Chowla is false for `, then we
have instead |Sb∗(Kz)[T

∗]| = (`, `, `, `).
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Proof. (1) [13, Proposition 3.4]. We have an injection Sb∗∩K(K) ↪−→ Sb∗(Kz)[τ − 1] which we prove is
surjective by Hilbert 90 and some elementary computations, yielding an isomorphism Sb∗(Kz)[τ−1, τ2+1] '
Sb∗∩K(K)[τ2 + 1]. Furthermore, we have

Sb∗∩K(K) = Sb∗∩K(K)[τ2 + 1]⊕ Sb∗∩K(K)[τ2 − 1] ,

and we argue that S`(K)[τ2−1] is trivial (and a fortiori all the Sb∗∩K [τ−1]), again using Hilbert 90, finishing
the proof of (1).

(2) and (3). Assume now that we are in the special case, so that Kz = Qz = Q(ζ`). By Proposition 8.4
we have (Cl(Kz)/Cl(Kz)

`)[τ + 1] = {1}, so that by Lemma 2.6 we have S`(Kz)[T
∗] ' (U(Kz)/U(Kz)

`)[τ −
g(`−1)/2]. By Theorem 2.3 of [11] we deduce that S`(Kz)[T

∗] is trivial if ` ≡ 3 (mod 4), ` 6= 3, and when

` ≡ 1 (mod 4) that it is an F`-vector space of dimension 1. If ε is a fundamental unit of K = Q(
√
`), then

since τ acts on ε as Galois conjugation of K/Q, we have ετ(ε) = NK/Q(ε) = ±1, which is an `th power. It

follows that S`(Kz)[T
∗] = {εj , j ∈ F`}.

The sizes of the ray Selmer groups are then established by Lemma 8.6 and Remark 8.7. �

Remarks 8.9. (1) The assumption that ` 6= 3 is required when applying Theorem 2.3 of [11], and indeed
(2) of the proposition is false for ` = 3 (see Proposition 7.3 of [12]).

(2) In Corollary 9.4 we will apply our computations to conclude that AAC is equivalent to the nonexis-
tence of D`-fields ramified only at `.

This proposition, in combination with Corollary 8.3, gives the size of |Gb| in the special case, with possible
exceptions ` ≡ 1 (mod 4) larger than 2 · 1011. In the general case we have the following:

Corollary 8.10. [13, Corollary 3.5] Assume that we are in the general case.

(1) We have a canonical isomorphism Gb ' Hom(Sb∗∩K(K),µ`).
(2) In particular

|Gb| = `r(b) with r(b) = 1− r2(D)− z(b) + rk`(Clb∗∩K(K)) ,

with z(b) = (2, 1, 0, 0) respectively, the second case occurring only if `|D.
(3) In particular still, if D < 0 and ` - h(D) then Gb is trivial for all b ∈ B.

Proof. (1) is immediate. Lemma 2.6, and Proposition 2.12 of [11], the proofs of which adapt to K without
change, yield

|Sb1(K)||Zb1/Z
`
b1 | = `1−r2(D)|Clb1(K)/Clb1(K)`| ,

where Zb1 = (ZK/b1)∗ and b1 = b∗ ∩ K. This gives (2) with z(b) = dimF`(Zb1/Z
`
b1

), and to finish we
compute for b as in (7.1):

• If ` - D, we have b∗ ∩K = (`2ZK , ∗, `ZK ,ZK).
• If ` | D with `ZK = p2` , we have b∗ ∩K = (p3` , p

2
` , p`,ZK).

�

Note that (3) is a generalization of Proposition 7.7 of [12].
Since the triviality of Gb for all b is equivalent to the vanishing of the “remainder term” φD(s) of Corollary

7.4, we conclude that Φ`(K, s) is given by a single Euler product in a wide class of examples:

Corollary 8.11. Assume that ` ≥ 5, D < 0, and that either we are in the special case (so that ` ≡ 3
(mod 4)), or that we are in the general case with ` - h(D). Then we have∑

L∈F`(K)

1

f(L)s
= − 1

`− 1
+

1

`− 1
L`(s)

∏
p≡(Dp) (mod `), p6=`

(
1 +

`− 1

ps

)
,
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where L`(s) is as above.

Note that for ` = 3, which we have excluded here, the possible nontriviality of re(b) forces us to also
distinguish between D ≡ 3 and D ≡ 6 (mod 9).

Examples with ` = 5:

∑
L∈F5(Q(

√
−1))

1

f(L)s
= −1

4
+

1

4

(
1 +

4

52s

) ∏
p≡±1 (mod 20)

(
1 +

4

ps

)
.

∑
L∈F5(Q(

√
−15))

1

f(L)s
= −1

4
+

1

4

(
1 +

4

5s

) ∏
p≡±1 (mod 30)

(
1 +

4

ps

)
.

9. Transformation of the Main Theorem

We now prove, as we did in [14] for the case of ` = 3, that the characters of Gb appearing in Theorem 6.1
can be given a simpler description, in terms of the splitting of primes in degree ` extensions of k. Our main
result along these lines extends Theorem 4.1 of [14] and Proposition 3.7 of [13], and does not assume that
k = Q, and thus is new even for ` = 3.

For the case k = Q we will further specialize the result and obtain an explicit formula, relying (in the
general case) on the results of [13]. We will assume that we are in either the general case or in the special
case with ` ≡ 1 (mod 4). Recall that in the special case with k = Q, ` ≡ 3 (mod 4), and ` > 3, Gb is
trivial and Corollary 8.11 already gives a simple description of Φ`(K, s). For simplicity’s sake we will omit
the special case with k 6= Q, ` ≡ 3 (mod 4); as we will see below the group theory would work out a bit
differently.

We first recall a bit of group theory, and introduce some notation. The Frobenius group F` = C` o C`−1
is the non-abelian group of order `(`− 1) given by the presentation

〈τ, σ : τ `−1 = σ` = 1, τστ−1 = σh〉 ,

for any primitive root h (mod `). As may be easily checked, C`−1 is not normal in F`, nor is any nontrivial
subgroup of C`−1; moreover, there are ` subgroups isomorphic to C`−1, generated by τσi for 0 ≤ i ≤ `− 1,
and all of these subgroups are conjugate.

We say that a degree ` field extension E/k is an F`-extension if its Galois closure has Galois group F`
over k.

Now, let K,Kz, τ, τ2 be defined as before. In the general case recall that K ′ was defined to be the mirror
field of K, e.g., the subfield of Kz fixed by τ (`−1)/2τ2; in the special case write K ′ = Kz = kz. We chose
τ ∈ Gal(kz/k) and a primitive root g (mod `) with τ(ζ`) = ζg` . In the general case τ lifts uniquely to an
element of Gal(Kz/K) and restricts to a unique element of Gal(K ′/k), so in either case the choice of g
(mod `) uniquely determines τ ∈ Gal(K ′/k).

Theorem 9.1. Assume, if ` ≡ 3 (mod 4), that we are in the general case. For each b ∈ B (as in Theorem
6.1), there exists a bijection between the following sets:

• Characters χ ∈ Ĝb, up to the equivalence relation χ ∼ χa for each a coprime to `.
• Subgroups of index ` of Gb.
• F`-extensions E/k (up to isomorphism), whose Galois closure E′ contains K ′ and whose conductor
f(E′/K ′) divides b′ = b ∩K, and such that τστ−1 = σg for τ ∈ Gal(K ′/k) as described above and
any generator σ of Gal(E′/K ′).



ON D`-EXTENSIONS OF ODD PRIME DEGREE ` 29

Moreover, for each corresponding pair (χ,E) and each prime p ∈ D ∪ D`, the following is true: we have
p ∈ D′(χ) ∪ D′`(χ) if and only if p is totally split in E; equivalently, p 6∈ D′(χ) ∪ D′`(χ) if and only if p is
totally inert or totally ramified in E.

Recall (Definition 2.12) that D ∪ D` was defined in terms of splitting conditions in Kz/k, so that this
theorem describes each Euler factor in Φ`(K, s) in terms of splitting conditions in a fixed set of number
fields.

Proof. The proof borrows heavily from those of Proposition 4.1 of [14] and Proposition 3.7 of [13].
The correspondence between the first two sets is immediate: Gb is elementary `-abelian, and characters

correspond to their kernels.

By Proposition 6.3, regard Gb as
Clb′ (K

′)
Clb′ (K

′)`
[τ ∓ g], where the sign is − in the general case and + in the

special case. If we setG′b = Clb′(K
′)/Clb′(K

′)`, by Lemmas 2.1 and 2.3 we have the orthogonal decomposition
G′b = Gb×G′′b , where G′′b is the direct sum of all of the other eigenspaces for the actions of τ . Thus, subgroups
of Gb of index ` correspond to subgroups B of Clb′(K

′) of index ` containing G′′b .
By class field theory, there exists a unique abelian extension E′/K ′, with Galois group C` and conductor

dividing b′, for which the Artin map induces an isomorphism Clb′(K
′)/B ' Gal(E′/K ′). The uniqueness

forces E′ to be Galois over k; here we use that b′, B, and Clb′(K
′) are preserved by Gal(K ′/k). For each

fixed b, we obtain a different E′ for each B.
Because the action of Gal(K ′/k) on Clb′(K

′)/Bχ matches its conjugation action on Gal(E′/K ′), we have

(9.1) Gal(E′/k) = 〈τ, σ : τ `−1 = σ` = 1, τστ−1 = σ±g〉 ' F` ,

and we take E to be the fixed field of 〈τ〉 (or, alternatively, of any conjugate subgroup). Note that −g is not
a primitive root if ` ≡ 3 (mod 4), so that in the special case with ` ≡ 3 (mod 4) the group (9.1) contains

τ (`−1)/2 in its center and is not isomorphic to F`.

It must finally be proved that whether p ∈ D′(χ) or not is determined by its splitting in E. Proposition
2.15 or Corollary 2.11 implies that D ∪ D` is precisely the set of primes p which split completely in K ′/k,
and by definition D′(χ)∪D′`(χ) is the set of primes p ∈ D∪D` for which one (equivalently, all) of the primes
pK′ of K ′ above p split completely in E′. If pK′ splits completely in E′, then so does p, so p also splits
completely in E/k. Conversely, if any pK′ is completely ramified or inert in Kz, then p must also do the
same in each E, since ramification and inertial degrees are multiplicative and [E′ : E] = `− 1.

�

For ` = 3 and k = Q in the general case, in [14] we further applied a theorem of Nakagawa to give a
precise description of all the extensions E/Q occurring in the statement of Theorem 9.1 in terms of their
discriminants. Using this, we obtained the formula

(9.2)
2

3r2(D)
Φ3(Q(

√
D), s) = M1(s)

∏(
−3D
p

)
=1

(
1 +

2

ps

)
+

∑
E∈L3(D)

M2,E(s)
∏(
−3D
p

)
=1

(
1 +

ωE(p)

ps

)
,

where: L3(D) is the set of all cubic fields of discriminant −D/3, −3D, and −27D; ωE(p) is 2 or −1 depending
on whether p is split or inert in E, as in Theorem 9.1; and M1(s) and M2,E(s) are 3-adic factors (a sum of
the appropriate Ab(s)).

9.1. Explicit computations for k = Q in the special case. For ` = 3, we have the following explicit
formula (corresponding to pure cubic fields), which was previously proved in [12].
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∑
L∈F3(Q(

√
−3))

1

f(L)s
= −1

2
+

1

6

(
1 +

2

3s
+

6

32s

)∏
p 6=3

(
1 +

2

ps

)
+

1

3

∏
p

(
1 +

ωE(p)

ps

)
,

where E is the cubic field defined by x3 − 3x− 1 = 0 (discriminant 34, Galois group C3), and

ωE(p) =


−1 if p is inert or totally ramified in E ,

2 if p is totally split in E ,

0 otherwise.

In fact, since E is cyclic cubic, we never have ωE(p) = 0, and ωE(p) = 2 if and only if p ≡ ±1 (mod 9).

For ` ≡ 3 (mod 4) and ` > 3, a generalization was proved in Corollary 8.11. For ` ≡ 1 (mod 4), the
generalization is more complicated due to the nontriviality of Gb. Define a polynomial

P (x) = −2iT`(ix/2) =

(`−1)/2∑
k=0

`
(`− k − 1)!

k!(`− 2k)!
x`−2k .

Here T`(x) is the Chebyshev polynomial of the first kind, satisfying

(9.3) P (x− x−1) = x` − x−` ,
so that x−1P (x) is the minimal polynomial of ζ` − ζ−1` .

Proposition 9.2. Assume that ` ≡ 1 (mod 4) satisfies the Ankeny-Artin-Chowla conjecture, and let ε be a

fundamental unit of Q(
√
`). Then we have∑

L∈F`(Q(
√
`))

1

f(L)s
= − 1

`− 1
+

1

`(`− 1)

(
1 +

`− 1

`s

) ∏
p≡1 (mod `)

(
1 +

`− 1

ps

)
+

1

`

∏
p

(
1 +

ωE(p)

ps

)
,

where E is the F`-field defined by P (x)− Tr(ε) = 0 of discriminant `(3`−1)/2, and

ωE(p) =


−1 if p is inert or totally ramified in E ,

`− 1 if p is totally split in E ,

0 otherwise.

If ` ≡ 1 (mod 4) does not satisfy the Ankeny-Artin-Chowla conjecture, we have the same formula, but with
Disc(E) = ``−2 and ωE(`) = `− 1.

Before presenting the proof, we make some additional observations (to be proved after the proposition).

Remarks 9.3. (1) In the equation for E we may replace Tr(ε) by Tr(±εm) for any odd m ∈ Z coprime
to `.

(2) Assuming AAC, the last product may be written as(
1− 1

`s

) ∏
p≡1 (mod `)

(
1 +

ωE(p)

ps

)
.

(3) When p ≡ 1 (mod `) then p is totally split in E if and only if

ε(p−1)/` ≡ 1 (mod p) ,

and otherwise p is inert in E.
(4) If in addition Qz = Q(ζ`) has class number 1, then p is totally split in E if and only if p = NQz/Q(π)

for some π ≡ 1 (mod `) in Qz.
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Corollary 9.4. Let ` ≡ 1 mod 4. Then there exist D`-fields ramified only at ` if and only if the Ankeny-
Artin-Chowla conjecture is false for `.

Proof. Immediate by inspecting the Dirichlet series of the proposition; the proposition also shows that for

any ` not satisfying the conjecture, the field is unique and has discriminant `
3(`−1)

2 . �

Remark 9.5. This corollary recovers and strengthens a result of Jensen and Yui [23, Theorem I.2.2], who
proved that if ` ≡ 1 (mod 4) is regular, then there are no D`-fields with discriminant a power of `. (This
can also be seen for ` ≡ 3 (mod 4) from Corollary 8.11.)

The connection to the Ankeny-Artin-Chowla conjecture was previously observed by Lemmermeyer [27],
who suggested that a proof of Corollary 9.4 may exist somewhere in the literature.

Before beginning the proof of Proposition 9.2 we establish the following:

Lemma 9.6. We have

Disc(Nz) =

{
`(3`

2−2`−3)/2 if AAC is true,

``(`−2) if AAC is false.

In addition, in the extension Nz/Qz the prime ideal (1− ζ)ZQz is totally ramified if AAC is true and totally
split otherwise.

Proof. The field Nz is a Kummer extension of Kz = Qz with defining equation x` − ε = 0, so that

Disc(Nz) = ±NQz/Q(d(Nz/Qz))Disc(Qz)
` = ±``(`−2)NQz/Q(f(Nz/Qz))

`−1 ,

where f(Nz/Qz) is the conductor.
By [11, Theorem 3.7] applied to K = Qz and α = ε which is a unit, we have f(Nz/Qz) = (1 − ζ)`+1−Aε ,

where Aε = ` + 1 if x` ≡ ε (mod (1 − ζ)`) has a solution in Qz, and otherwise Aε is the maximal k such
that x` ≡ ε (mod (1 − ζ)k) has a solution. By Lemma 8.6 we have Aε = (` − 1)/2 (resp., Aε = ` + 1) if

AAC is true (resp., false), hence f(Nz/Qz) = (1 − ζ)(`+3)/2ZQz (resp., f(Nz/Qz) = ZQz), from which the
formula follows (note that the sign of the discriminant is positive since Qz hence Nz is totally complex). In
addition, if AAC is false, so that Ck is soluble for all k, then Hecke’s Theorem [8, 10.2.9] (an extension of
[11, Theorem 3.7]) implies that (1−ζ)ZQz is totally split, while if AAC is true then it is totally ramified. �

Proof of Proposition 9.2. The result follows for an undetermined E by Theorem 9.1 and Proposition 8.8. To
determine E, observe that Proposition 8.1 and the proof of Proposition 8.8 imply that Nz = Kz(ε

1/`), and
that the considerations in the proof of Theorem 9.1 allow us to take E to be any of the (conjugate) degree
` subfields of Nz, so that it suffices to exhibit one.

We take E = Q(ε1/` − ε−1/`) for any fixed choice of ε1/`, recalling that the fundamental unit has norm
−1. Then the minimal polynomial of E is P (x)− Tr(ε) by construction, or more precisely by (9.3).

It remains only to argue that

Disc(E) =

{
`(3`−1)/2 if AAC is true,

``−2 if AAC is false.

We assume that AAC is true (if false, a similar proof applies). On the one hand we have

Disc(Nz) = Disc(E)`−1NE/Q(d(Nz/E)) ,

in other words taking valuations and using the proposition:

(`−1)v`(Disc(E)) = (3`2−2`−3)/2−v`(NE/Q(d(Nz/E))) = (`−1)(3`−1)/2+`−2−v`(NE/Q(d(Nz/E))) .
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On the other hand, the extension Nz/E is of degree ` − 1 hence tame, so v`(NE/Q(d(Nz/E))) ≤ ` − 2.
Divisibility by ` − 1 thus implies the result, together with the additional result that NE/Q(d(Nz/E)) =

``−2 = Disc(Qz).
�

We conclude by establishing the statements made in the remarks. For (1), it is easily seen that our
construction still produces a degree ` subfield E. (2) follows because ` is totally ramified in E.

To prove (3), we again apply Hecke’s theorem 10.2.9 of [8]: p is totally split in E iff it is in Nz/Qz, hence
by Hecke iff x` ≡ ε (mod p) is soluble in Qz. (Here p is any prime of Qz above p, which must have degree

1 since p ≡ 1 (mod `) is totally split in Qz.) This is equivalent to ε(p−1)/` ≡ 1 (mod p), which by Galois
theory will then be true for all primes p above p since for any σ ∈ Gal(Qz/Q) we have either σ(ε) = ε
or σ(ε) = −ε−1, and (p − 1)/` is even so the sign disappears. Hence this is equivalent to the condition

ε(p−1)/` ≡ 1 (mod p), as desired.
Finally, (4) follows from Eisenstein’s reciprocity law.

9.2. Explicit computations for k = Q in the general case. Let k = Q. In Theorem 9.1 we saw that
characters χ of Gb (up to the equivalence χ ∼ χa for (a, `) = 1) correspond to degree ` fields E having
certain properties. In our companion paper [13] with Rubinstein-Salzedo, we further proved the following:

Theorem 9.7. [13] Suppose that k = Q and K = Q(
√
D) with D 6= 1,±`, so that we are in the general

case, and as before let K ′ be the mirror field of K.
Then the fields E enumerated in Theorem 9.1 are precisely those F`-fields E whose Galois closure contains

K ′, subject to the condition τστ−1 = σg described there, satisfying the following additional conditions:

• E is totally real if D < 0, and has `−1
2 pairs of complex embeddings if D > 0.

• |Disc(E)| has the form `k+bD
`−1
2 , where k and b satisfy

(9.4)

k ∈ {0, 2}, b = `− 2 if ` - D ,

k ∈ {0, (`+ 3)/2} , b = `−3
2 if ` | D and ` ≡ 1 (mod 4) ,

k ∈ {0, (`+ 5)/2} , b = `−5
2 if ` | D and ` ≡ 3 (mod 4) .

Moreover, if E is any F`-field satisfying these last two properties, then its Galois closure automatically
contains K ′.

Recall that we have b ∈ B = {1, (`)1/2, (`), (`)`/(`−1)}, with the possibility (`)1/2 occurring only if `|D.

The complete list of fields enumerated in Theorem 9.7 corresponds to b = (`)`/(`−1). A careful reading of
the proof of Theorem 9.7 (in [13]), with k having the same meaning above as in [13, Section 4], shows that
the remaining b correspond to the following possibilities for k in (9.4):

Condition on D b = 1 b = (`)1/2 b = (`) b = (`)`/(`−1)

` - D k = 0 - k = 0, 2 k = 0, 2
` | D and ` ≡ 1 (mod 4) k = 0 k = 0 k = 0, (`+ 3)/2 k = 0, (`+ 3)/2
` | D and ` ≡ 3 (mod 4) k = 0 k = 0 k = 0, (`+ 5)/2 k = 0, (`+ 5)/2

One exception occurs for ` = 3: Only k = 0 corresponds to b = (`) when ` | D; this is because the
inequality (` + 5)/2 ≤ ` − 1 is true for all ` ≡ 3 (mod 4) except for ` = 3. (Note also for ` = 3 that this
result is equivalent to part of Proposition 4.1 in [14].)

This is sufficient to obtain an explicit formula for Φ`(K, s) for any K and `, provided that the appropriate
F`-fields can be tabulated. We present two examples, which we also double-checked numerically using a
program written in PARI/GP [34].
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Example 9.8. Let K = Q(
√

13) and ` = 5. Then, we have

∑
L∈F5(Q(

√
13))

1

f(L)s
= −1

4
+

1

20

(
1 +

4

25s

)∏
p

(
1 +

4

ps

)
+

1

5

(
1− 1

25s

)∏
p

(
1 +

ωE(p)

ps

)
= 59−s + 409−s + 475−s + 619−s + 709−s + 1009−s + · · ·+ 4 · 24131−s + · · · ,

where the products are over primes p ≡ 1, 16, 19, 24, 34, 36, 44, 51, 54, 56, 59, 61 (mod 65), E is the field de-
fined by the polynomial x5 + 5x3 + 5x− 3, and 24131 = 59 · 409.

Example 9.9. Let K = Q(
√
−7 · 41) and ` = 7. Then, we have∑

L∈F7(Q(
√
−287))

1

f(L)s
= −1

6
+

1

6

(
1 +

6

7s

)∏
p

(
1 +

6

ps

)
+

(
1− 1

7s

)∏
p

(
1 +

ωE(p)

ps

)
= 1 + 7 · 301−s + 7 · 337−s + 7 · 581−s + 7 · 791−s + · · ·+ 42 · 296897−s + · · · ,

where the products are over primes p ≡
(
D
p

)
(mod `) excluding p = `, E is the field defined by the polynomial

x7 − 14x5 + 56x3 − 56x− 15, and 296897 = 337 · 881.
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