
AN UNCERTAINTY PRINCIPLE FOR FUNCTION FIELDS

FRANK THORNE

Abstract. In a recent paper, Granville and Soundararajan [8] proved an “uncertainty principle”

for arithmetic sequences, which limits the extent to which such sequences can be well-distributed
in both short intervals and arithmetic progressions. In the present paper we follow the methods
of [8] and prove that a similar phenomenon holds in Fq [t].

1. Introduction and Statement of Results

In a recent work [8], Granville and Soundararajan established a so-called “uncertainty principle”
for arithmetic sequences. Loosely speaking, this means that sequences of integers which are deter-
mined by arithmetic constraints cannot always be well-distributed. In particular, suppose that A
is a sequence of integers and S is an integer, such that for all d with (d,S) = 1, the proportion of
elements of A divisible by d is asymptotic to h(d)/d, for a multiplicative function h(d) taking values
in [0, 1]. We assume further that a suitable weighted average of h(p) is sufficiently smaller than 1.
If this happens we will refer to A as an “arithmetic sequence”.

Under appropriate technical hypotheses, Granville and Soundararajan then prove that A cannot
be uniformly well-distributed in both short intervals and arithmetic progressions to large moduli.
For example, if A is a subset of [1, x], and u is a positive integer (either fixed or a slowly increasing
function of x), then A must be irregularly distributed in short intervals of length ≥ (log x)u, arith-
metic progressions to moduli ≤ exp(2(log x)1−η) for a certain quantity η (related to the density of
A), or both.

Their results can be considered as a far-reaching generalization of a result of Maier [9], who proved
that the primes are not uniformly well-distributed in short intervals. In particular, he proved that
for any fixed λ0 > 0,

(1.1) lim sup
x→∞

π(x + (log x)λ0) − π(x)

(log x)λ0−1
> 1,

and

(1.2) lim inf
x→∞

π(x + (log x)λ0) − π(x)

(log x)λ0−1
< 1.

Maier’s result contracted probabilistic heuristics and was quite surprising.
Maier proved his results by constructing a “Maier matrix” where the rows were short intervals

and the columns were certain arithmetic progressions. Playing these off against one another, Maier
constructed matrices such that the number of primes in the whole matrix was either more or fewer
than expected, thereby obtaining (1.1) and (1.2).

Maier’s method was extended by many others to prove a variety of similar results; we refer to
the excellent survey articles of Granville [7] and Soundararajan [15] as well as the introduction of
[8] for a more detailed discussion. One may also see [15] for an enlightening description of how the
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methods of [9] motivated those in [8].

Maier matrices and irregularities in Fq[t]. In light of the well-known analogy between Z
and Fq[t], it is natural to ask questions about the distribution of primes and related sequences in

Fq[t]. The prime number theorem for Fq[t] says that π(n) = qn/n + O(qn/2/n), where π(n) denotes
the number of monic irreducibles of degree n. (See Section 2 for additional details and related
results.)

This suggests that probabilistic heuristics may be used to make conjectures about the distribution
of primes in Fq[t]. In some cases these conjectures have proved more tractable than their analogues in
Z. For example, Pollack [12] has recently proved an Fq[t] version of the quantitative Bateman-Horn
conjecture (which includes the Hardy-Littlewood prime tuple conjecture as a special case) which
is valid when q is coprime to 2n and large in relation to n. Conversely, when q is not coprime to
n, Conrad, Conrad, and Gross [4] have found a global obstruction to this conjecture related to a
certain average of the Möbius function, and they propose a revised conjecture based on geometric
considerations as well as numerical calculations.

In this paper we are primarily interested in irregularities similar to (1.1) and (1.2). In a previous
paper [16], the present author adapted the Maier matrix method to Fq[t] and proved the analogue
of Maier’s result, as well as the analogue of a result of Shiu concerning strings of congruent primes.
In unpublished work, Udovina [17] similarly proved the analogous result for primes in arithmetic
progressions to large moduli.

One expects that the mechanism of [8] can be translated to Fq[t], and the object of the present
paper is to prove that this is indeed the case. In particular we will obtain the following two theorems
as our main results. These results are somewhat technical, and the theorem statements involve
notation which will be defined in Section 2.

Our first result is the analogue of Corollary 1.3 of [8], and establishes that arithmetic sequences
must fail to be well-distributed uniformly in arithmetic progressions to large moduli:

Theorem 1.1. Assume a large integer y is given, such that all primes of S are of degree less than
12 log y. Assume furthermore that

(1.3)
∑

deg p≤y

1 − h(p)

|p|
deg p ≥ αy

for some α ≥ 39 log y/y. Write η = min(α/3, 1/100). Then for every u ∈ [5y/η2, eηy/2] (if q = 2,
for every u ∈ [5y/η2, eηy/5]) and every n ≥ 5qy there exists an arithmetic progression a (mod m)
with deg m ≤ n − u and (m,S) = 1 which satisfies

∣

∣

∣

∣

A(n;m,a) −
fm(a)

|m|γm
A(n)

∣

∣

∣

∣

/

A(n)

φ(m)
≥

1

3
exp

(

−
u

ηy
(1 + 25η) log

(

2u

yη3

))

.

Our second main result is the “uncertainty principle”, and establishes that arithmetic sequences
must be poorly distributed either in short intervals, or in arithmetic progressions to much smaller
moduli:

Theorem 1.2. Assume a large integer y is given, such that all primes of S are of degree less than
12 log y. Assume furthermore that

(1.4)
∑

deg p≤y

1 − h(p)

|p|
deg p ≥ αy

for some α ≥ 39 log y/y. Write η = min(α/3, 1/100). Then for every u ∈ [5y/η2, eηy/2] (if q = 2,
for every u ∈ [5y/η2, eηy/5]) and every n ≥ 5qy, at least one of the following is true:
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(i) There exists an arithmetic progression a (mod m) with deg m ≤ 2q1+(1−η)y and (m,S) = 1
which satisfies

∣

∣

∣

∣

A(n;m,a) −
fm(a)

|m|γm
A(n)

∣

∣

∣

∣

/

A(n)

φ(m)
≥

1

2
exp

(

−
u

ηy
(1 + 25η) log

(

2u

yη3

))

.

(ii) There exists an interval (f, u − 1) with deg f = n, such that
∣

∣

∣

∣

A(f, u − 1) −
A(n)

qn−u

∣

∣

∣

∣

/

A(n)

qn−u
≥

1

2
exp

(

−
u

ηy
(1 + 25η) log

(

2u

yη3

))

.

These results imply the existence of irregularities in the distribution of the primes, in both short
intervals and in arithmetic progressions to large moduli. (To obtain irregularities in short intervals,
we apply Theorem 1.2 and observe that (i) contradicts the prime number theorem for arithmetic
progressions (2.7).) Following [8], we will analyze the primes separately and prove somewhat better
results.

Our first such result concerns irregularities in short intervals, and improves upon a previous result
of the present author ([16], Theorem 1.1).

Theorem 1.3. Assume that z, D, and u are positive integers satisfying z ≥ z0, D ≥ 5qz, and
B < u/z ≪ e2z/3/z for certain absolute constants z0 and B. If q = 2, further assume u/z < 22z/3/z.
Then there exist monic polynomials f± of degree D so that

π(f+, u) ≥
qu+1

D

[

1 + exp

(

−
u

z

(

log
(u

z

)

+ log log
(u

z

)

+ O(1)
)

)]

,

and

π(f−, u) ≤
qu+1

D

[

1 − exp

(

−
u

z

(

log
(u

z

)

+ log log
(u

z

)

+ O(1)
)

)]

.

The implied constants are absolute.

Remark. We may recover Theorem 1.1 of [16] by taking u/z to be fixed, D = 5qz, and allowing z to
go to infinity.

We also prove the existence of irregularities in the distribution of primes in arithmetic progressions
to large moduli, improving upon the previously mentioned work of Udovina.

Theorem 1.4. Assume that z, D, and u are positive integers satisfying z ≥ z0, D ≥ 5qz, and
B < u/z ≪ e2z/3/z for certain absolute constants z0 and B. If q = 2, further assume u < 22z/3/z.
If l is any monic polynomial of degree D, then for some u± ∈ (u, u(1 + 3A/ log(u/z))) there exist
arithmetic progressions (D + u+; l, a+) and (D + u−; l, a−) with (l, a±) = 1 satisfying

π(D + u+; l, a+) ≥
qD+u+

φ(l)(D + u+)

[

1 + exp

(

−
u

z

(

log
(u

z

)

+ log log
(u

z

)

+ O(1)
)

)]

,

π(D + u−; l, a−) ≤
qD+u−

φ(l)(D + u−)

[

1 − exp

(

−
u

z

(

log
(u

z

)

+ log log
(u

z

)

+ O(1)
)

)]

.

Remark. We may easily modify the proof and instead obtain, for any fixed degree D′ ≥ 5qz, irregular
progressions (D′; l+, a+) and (D′; l−, a−) such that π(D′; l±, a±) satisfies the analogous inequalities,
and D − deg l± satisfies the bounds stated for u±.

We could give many more examples following [8]; essentially, the present work suggests that all
of the examples appearing in [8] could likely be translated into Fq[t]. We will give a brief discussion
of some examples and applications in Section 6.
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The outline of the paper is as follows: In Section 2 we will describe our setup and notation and
introduce some needed facts about Fq[t]. In Section 3 we will state and prove the Fq[t] version of the
general framework, involving several results on the oscillation of mean values of certain arithmetic
functions. In Section 4 we will apply this framework to the primes and prove Theorems 1.3 and 1.4.
In Section 5 we will then present the proofs of Theorems 1.1 and 1.2. We will conclude in Section 6
with several additional examples.

Acknowledgements

To be entered later (after the referee report is received).

2. Notation and General Considerations

Let x denote a variable element of Fq[t], and let a(x) : Fq[t] → R denote an arithmetic function
taking nonnegative values. Typically we think of a(x) as the characteristic function of a subset A of
Fq[t], but this is not required. We will, however, make several assumptions about the function a(x),
which we describe in this section.

We introduce the following notation:

(2.1) A(n) :=
∑

deg x=n

a(x),

(2.2) A(n;m,a) :=
∑

deg x=n
x≡a (mod m)

a(x).

For a fixed monic polynomial x and an integer i < deg x, we will also write

(2.3) A(x, i) :=
∑

deg s≤i

a(x + s),

where s ranges over all (not necessarily monic) polynomials of Fq[t].
When a(x) is the characteristic function of the primes we also write π(n), π(n;m,a), π(x, i) for the

above. Moreover, when a(x) is the characteristic function of any set A, we write (n;m,a) and (x, i)
to denote the sets of those polynomials (“arithmetic progressions” and “intervals”, respectively)
counted in the sums above.

We will now make the following assumption:

Assumption 2.1. For each monic m which is coprime to a ‘bad’ modulus S, we have

(2.4) A(n;m, 0) ∼
h(m)

|m|
A(n),

for a multiplicative arithmetic function h(m) which takes values in [0, 1].

Our results will then take the shape of limitations on naive estimates predicted by (2.4).
Our assumption that h is multiplicative may be thought of as an assertion that the ‘probabilities’

that a ‘random’ polynomial x is divisible by two coprime polynomials m1 and m2 should be inde-
pendent. Our assumption that h(m) ≤ 1 for all m will be true for the examples we have in mind.
Moreover, if instead h(m) is much larger than 1 for any m, it is quite easy to prove the existence of
irregular behavior. (See Proposition 2.1 of [8].)

We now assume further that the asymptotic behavior of A(n;m,a)/A(n) should depend only on
the gcd of a and m, and again our main results take the shape of limitations on the extent to which
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this assumption can hold. With this assumption, we arrive at the prediction (exactly following
Section 2 of [8], where further details and motivation can be found) that

A(n;m,a) ∼
fm(a)

|m|γm
A(n),

where

(2.5) γm :=
∏

p|m

(

1 − h(p)/|p|

1 − 1/|p|

)−1

=
∏

p

(

1 −
1

|p|

)(

1 +
fm(p)

|p|
+

fm(p2)

|p|2
+ · · ·

)

.

Here fm(a) is a multiplicative function which is periodic with period m and satisfies fm(a) =
fm((a,m)), and also fm(ca) = fm(a) for any nonzero constant c ∈ Fq. If p ∤ m, then fm(pk) = 1 for
any k ≥ 1. Otherwise, we have

(2.6) fm(pk) :=















(

h(pk) − h(pk+1)
|p|

)(

1 − h(p)
|p|

)−1

if k < e,

h(pe)

(

1 − 1
|p|

)(

1 − h(p)
|p|

)−1

if k ≥ e.

Here pe is the highest power of p dividing m. If m is squarefree then we will have fm(r) ≤ 1 for all
r. (We remark that our main results assume that fm(r) ≤ 1 for all r, and that m will be squarefree
in all of our examples.)

Basic facts about Fq[t]. Here we review some standard facts and notation concerning Fq[t] which
will be used later.

The prime number theorem for arithmetic progressions (see Chapter 4 of [14]) states that

(2.7) π(n;m,a) =
1

φ(m)

qn

n
+ Om

(

qn/2

n

)

,

whenever (a,m) = 1. Here the Euler φ-function is defined by φ(m) = |(Fq[t]/mFq[t])
×|.

In the special case of counting primes, we in fact have the exact formula (again, see [14])

(2.8) π(n) =
1

n

∑

d|n

µ(d)qn/d,

where π(n) denotes the number of primes of degree n. This in particular implies that π(n) ≤ qn/n,
a fact we will use later.

We will in fact use an improved version of (2.7) due to Rhin [13], which makes the dependence on
m explicit and simultaneously allows us to restrict to intervals of the type (x, i), when i is at least
(deg x)1/2+ǫ.

To state Rhin’s result, we write π(x, n;m,a) for the number of primes p which are congruent to
a modulo m and which are also in the interval (x, n) (i.e., which satisfy deg(f − p) ≤ n). We will
also write (x, n;m,a) for the set of monic polynomials meeting these conditions. Then whenever
(a,m) = 1 and n ≥ deg m, Rhin’s result is that

(2.9) π(x, n;m,a) =
1

φ(m)

qn+1

deg x
+ O((deg x)q(deg x)/2).

The implied constant is absolute, and it is bounded explicitly in [13].
Periodically, we will use ‘absolute value’ notation: that is, for a monic polynomial x ∈ Fq[t], then

|x| is defined to be qdeg x = |Fq[t]/(x)|.
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Throughout, we will use the notation f(t) ≫ g(t) to mean that f(t) > Cg(t) for some constant C
and for sufficiently large t. Unless explicitly stated to the contrary, the constant C and the minimum
allowable t will be absolute. In particular (and in contrast to the author’s previous paper [16]), any
dependence of our constants or inequalities on q will be explicitly noted.

3. The Framework

As in [8], our results boil down to proving the existence of oscillations in mean values of arithmetic
functions. For the most part our methods and results closely follow [8], and some repetition will be
unavoidable. There are several differences occurring in our arguments, however, which we summarize
here.

For our purposes, the most significant difference between Z and Fq[t] is that the primes of Fq[t] are
‘clumped’ into degrees. In particular, if f : Fq[t] → C is an arithmetic function, then the Dirichlet
series

∑

x∈Fq[t] fQ(x)|x|−s does not distinguish between primes of the same degree. Accordingly we

expect to prove statements concerning entire degrees of polynomials, and this will indeed be the
case.

We will fix an integer z, which we assume is larger than an implied absolute constant z0. (We
remark in particular that z0 does not depend on q.) Let Q be an element of Fq[t] whose prime factors
are all of degree ≤ z, and (as in Section 2) let fQ(x) be a multiplicative function with fQ(pk) = 1
whenever p ∤ Q, such that 0 ≤ fQ(x) ≤ 1 for all x.

We associate to f(x) the Dirichlet series

(3.1) FQ(s) :=
∑

x∈Fq[t]

fQ(x)|x|−s,

and define a further Dirichlet series GQ(s) =
∑

n gQ(x)|x|−s by the equation

(3.2) FQ(s) = ζ(s)GQ(s).

In other words, for ℜs > 1, GQ(s) is defined by the Euler product

(3.3) GQ(s) :=
∑

x∈Fq[t]

gQ(x)|x|−s =
∏

p|Q

(

1 −
1

|p|s

)(

1 +
fQ(p)

|p|s
+

fQ(p2)

|p|2s
+ . . .

)

.

The equation (3.3) also furnishes an analytic continuation of GQ(s) to ℜs > 0. We note the relations

(3.4) GQ(1) = γQ,

where γQ was defined in (2.5), as well as

(3.5) fQ(x) =
∑

d|x

gQ(d)

which follows immediately from (3.2). We note furthermore that gQ is multiplicative, gQ(x) = 0 for
any x ∤ Q, and |gQ(x)| ≤ 1 for any x.

We expect from (3.1) that GQ(1) = γQ should be the mean value of fQ(x), and define an error
term E(u) measuring the average deviation of fQ from the mean:

(3.6) E(u) :=
1

qu

∑

deg x=u

(fQ(x) − GQ(1)).

Remark. Our definition of E(u) differs somewhat from the analogous definition in [8]. To follow [8]
most closely we would sum over deg n ≤ uz instead, but this definition works nicely in Fq[t].
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We introduce a variable ξ ∈ (0, 2
3 ); we will later make further explicit restrictions on ξ in terms

of z and q. We also introduce the following quantities, following [8], which will be used in the
formulation of our results:

Hj(ξ) :=
∑

p|Q

1 − fQ(p)

|p|
|p|ξ

(

1 −
deg p

z

)j

,

H(ξ) = H0(ξ) :=
∑

p|Q

1 − fQ(p)

|p|
|p|ξ,

J(ξ) :=
∑

p|Q

1

|p|2
|p|2ξ.

Our main result is the following analogue of Theorem 3.1 of [8]. It establishes that under some
reasonable technical hypotheses, the function fQ(n) exhibits oscillations when averaged over single
degrees.

Theorem 3.1. Assume that ξ satisfies

(3.7)
6

z log q
< ξ < min

(2

3
,

2

3 log q

)

.

Suppose further that H(ξ) ≥ 20H2(ξ) + 76J(ξ) + 20, so that

(3.8) τ :=
√

(5H2(ξ) + 19J(ξ) + 5)/H(ξ) ≤ 1/2.

Then there exist integers u± ∈ (zH(ξ)(1 − 2τ), zH(ξ)(1 + 2τ)) satisfying

E(u+) ≥
1

12ξz log qH(ξ)
exp

(

H(ξ) − 5H2(ξ) − 5J(ξ)
)

q−ξu+ ,

E(u−) ≤ −
1

12ξz log qH(ξ)
exp

(

H(ξ) − 5H2(ξ) − 5J(ξ)
)

q−ξu− .

We will prove Theorem 3.1 after first proving several preliminary technical results. In [8] Granville
and Soundararajan prove several bounds for different integrals of the functions qξuE(u) and qξu|E(u)|,
and for Fq[t] we will prove similar results with the integrals replaced with sums.

Proposition 3.2. In the range 0 < ξ < 0.67, we have

∞
∑

u=0

qξu|E(u)| ≤
1

ξ log q
exp(H(ξ) + 5J(ξ)).

Proof. Using (3.5) we see that

E(u) = −GQ(1) +
∑

d∈Fq[t]
deg d≤u

gQ(d)

|d|
=

∑

d∈Fq[t]
deg d>u

gQ(d)

|d|
.



8 FRANK THORNE

Therefore, it follows that
∞
∑

u=0

qξu|E(u)| ≤

∞
∑

u=0

qξu

(

∑

deg d>u

|gQ(d)|

|d|

)

=
∑

d∈Fq[t]

|gQ(d)|

|d|

∑

u<deg d

qξu

<
∑

d∈Fq[t]

|gQ(d)|

|d|

qξ(deg d)

ξ log q

=
1

ξ log q

∑

d∈Fq[t]

|gQ(d)|

|d|1−ξ
.

Exactly as in [8], we have |p| ≥ 2 for any prime p, and the bound ξ < 0.67 implies that

∑

d∈Fq[t]

|gQ(d)|

|d|1−ξ
≤

∏

p|Q

(

1 +
1 − fQ(p)

|p|1−ξ

)(

1 +
5

|p|2(1−ξ)

)

.

The proposition then follows by taking logarithms. �

For a complex variable s, we introduce a function

(3.9) I(s) :=
∞
∑

u=0

q−suE(u).

By Proposition 3.2, the sum converges absolutely for ℜs > − 2
3 . Then we have for ℜs > 0

I(s) =
∑

x∈Fq[t]

(

fQ(x) − GQ(1)

)

q(− deg x)(s+1)

= FQ(1 + s) − GQ(1)ζ(1 + s),

which gives the identity

(3.10) I(s) = ζ(1 + s)

(

GQ(1 + s) − GQ(1)

)

.

By analytic continuation this identity holds for ℜs > − 2
3 .

Proposition 3.3. If 6
z log q < ξ < min(2

3 , 2
3 log q ), then

∞
∑

u=0

qξu|E(u)| ≥
1

2ξ log q

(

exp[H(ξ) − 5H2(ξ) − 5J(ξ)] − 1

)

.

Remark. This result should be compared to Proposition 3.7 of [8].

Proof. We take s = −(ξ + iπ/(z log q)) in (3.10), and see that

(3.11)

∞
∑

u=0

qξu|E(u)| ≥ |I(s)| ≥ |ζ(1 + s)|
(

|GQ(1 + s)| − 1
)

.

We have

(3.12) ζ(1 + s) = 1/(1 − q−s) =
1

s log q − 1
2 (s log q)2 + 1

6 (s log q)3 + . . .
.
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If ξ log q < 2/3, then |s log q| ≤ 1 for large z, and we then have

|ζ(1 + s)| ≥
1

(e − 1)|s log q|
≥

1

(e − 1)|s/ξ|(ξ log q)
.

We compute that with ξ > 6/(z log q) we have (e − 1)|s/ξ| < 2, and so we have

(3.13) |ζ(1 + s)| ≥
1

2ξ log q
.

For the quantity |GQ(1 + s)|, we have the inequality

(3.14) log |GQ(1 + s)| ≥ H(ξ) − 5H2(ξ) − 5J(ξ).

The proof of (3.14) proceeds exactly as in [8], and so we omit the details here. Upon exponentiating
and plugging everything into (3.11) we obtain our result. �

Proposition 3.4. For 0 < ξ < 2
3 , we have the upper bound

(3.15)

∣

∣

∣

∣

∞
∑

u=0

qξuE(u)

∣

∣

∣

∣

≤
2

ξ log q
.

Proof. Using (3.10) with s = −ξ, we have

(3.16)

∞
∑

u=0

qξuE(u) = ζ(1 − ξ)
(

GQ(1 − ξ) − GQ(1)
)

.

The definition of GQ implies that |GQ(t)| ≤ 1 for any real t > 0, and we have

ζ(1 − ξ) =
−1

ξ log q + 1
2 (ξ log q)2 + 1

6 (ξ log q)3 + · · ·

which implies in particular that

(3.17) |ζ(1 − ξ)| ≤
1

ξ log q
.

The result follows immediately from (3.16) and (3.17). �

Proof of Theorem 3.1. Let I+ (and I−) denote the set of u where E(u) ≥ 0 (respectively E(u) < 0).
Combining Propositions 3.3 and 3.4, we see that

(3.18)
∑

u∈I±

qξu|E(u)| ≥
1

4ξ log q

(

exp[H(ξ) − 5H2(ξ) − 5J(ξ)] − 1

)

−
1

ξ log q
.

Using the fact that H(ξ) − 5H2(ξ) − 5J(ξ) ≥ 20, this implies that

(3.19)
∑

u∈I±

qξu|E(u)| ≥
1

5ξ log q
exp

(

H(ξ) − 5H2(ξ) − 5J(ξ)
)

.

Write u1 = ⌊zH(ξ)(1 + 2τ)⌋. Then Proposition 3.2 implies that for z > 150/ ln 2,

∑

u≥u1

qξu|E(u)| ≤ q−τu1/(z log q)
∞
∑

u=0

q(ξ+τ/(z log q))u|E(u)|

≤
1

ξ log q
exp

(

−
τu1

z
+ H

(

ξ +
τ

z log q

)

+ 5J
(

ξ +
τ

z log q

)

)

.
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We will have H
(

ξ + τ
z log q

)

≤ eτH(ξ) < (1 + τ + τ2)H(ξ) and J
(

ξ + τ
z log q

)

≤ e2τJ(ξ) < 2.8J(ξ), so

we conclude that
∑

u≥u1

qξu|E(u)| ≤
1

ξ log q
exp

(

−
τu1

z
+ (1 + τ + τ2)H(ξ) + 14J(ξ)

)

.

Plugging in the definition of u1, we obtain
∑

u≥u1

qξu|E(u)| ≤
1

ξ log q
exp

(

H(ξ) − τ2H(ξ) + 14J(ξ) +
τ

z

)

,

and substituting the definition of τ we see that

(3.20)
∑

u≥u1

qξu|E(u)| ≤
2

e5ξ log q
exp

(

H(ξ) − 5H2(ξ) − 5J(ξ)
)

.

We similarly write u0 = ⌈zH(ξ)(1 − 2τ)⌉, and we have

∑

u≤u0

qξu|E(u)| ≤ qτu0/(z log q)
∞
∑

u=0

q(ξ−τ/(z log q))u|E(u)|

≤
1

ξ log q − τ/z
exp

(

τu0

z
+ H

(

ξ −
τ

z log q

)

+ 5J
(

ξ −
τ

z log q

)

)

.

We have J
(

ξ − τ
z log q ) ≤ J(ξ), and

H
(

ξ −
τ

z log q

)

≤
∑

p|Q

1 − fQ(p)

|p|
|p|ξ

(

1 − τ
deg p

z
+

τ2

2

)

= H(ξ)(1 − τ + τ2/2) + τH1(ξ) ≤ H(ξ)(1 − τ + τ2/2) + τ
√

H(ξ)H2(ξ).

Thus, we conclude that

∑

u≤u0

qξu|E(u)| ≤
1

ξ log q − τ/z
exp

(

τu0

z
+ H(ξ)(1 − τ + τ2/2) + τ

√

H(ξ)H2(ξ) + 5J(ξ)

)

.

Substituting the definition of u0, we see that

∑

u≤u0

qξu|E(u)| ≤
1

ξ log q − τ/z
exp

(

H(ξ) −
3

2
τ2H(ξ) + τ

√

H(ξ)H2(ξ) + 5J(ξ) +
τ

z

)

.

A routine calculation establishes that

−
3

2
τ2H(ξ) + τ

√

H(ξ)H2(ξ) + 5J(ξ) ≤ −5H2(ξ) − 5J(ξ) − 5,

and we conclude that
∑

u≤u0

qξu|E(u)| ≤
2

e5(ξ log q − τ/z)
exp

(

H(ξ) − 5H2(ξ) − 5J(ξ)
)

.

Since ξz log q > 6, we see that

(3.21)
∑

u≤u0

qξu|E(u)| ≤
2.5

e5ξ log q
exp

(

H(ξ) − 5H2(ξ) − 5J(ξ)
)

.

Combining (3.19), (3.20), and (3.21) we see that

(3.22)
∑

u∈I±∩(u0,u1)

qξu|E(u)| ≥
1

6ξ log q
exp

(

H(ξ) − 5H2(ξ) − 5J(ξ)
)

.
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As u1 − u0 ≤ 2zH(ξ), we have for some u± ∈ I± ∩ (u0, u1) that

|E(u±)| ≥
1

12ξz log qH(ξ)
exp

(

H(ξ) − 5H2(ξ) − 5J(ξ)
)

q−ξu± ,

which is the desired result. �

We now derive several corollaries of Theorem 3.1, still following [8]. Our first such is the analogue
of Corollary 3.2 of [8].

Corollary 3.5. Let e−z/13 ≤ η ≤ 1/100 and suppose that Q is composed only of primes of degrees
in [(1 − η)z, z]. Suppose further that

∑

p|Q

1 − fQ(p)

|p|
≥ η2.

Then for ez/2 ≥ u ≥ 5z/η2 (if q = 2, for ez/5 ≥ u ≥ 5z/η2) there exist points u± ∈ [u, u(1 + 23η)]
such that

(3.23) E(u+) ≥ exp

(

−
u

z
(1 + 25η) log

(

2u

zη2

))

,

(3.24) E(u−) ≤ − exp

(

−
u

z
(1 + 25η) log

(

2u

zη2

))

.

Proof. We observe that for q 6= 2 and ξ < 2
3 log q , or for q = 2 and ξ < 53

100 , we have the inequalities

(3.25) H(ξ) ≥ η2q(1−η)ξz, H2(ξ) ≤ η2H(ξ), J(ξ) ≤ η2H(ξ).

The first two relations are clear. To show the last, it suffices to show that

q2ξz
∑

p|Q

1

|p|2
≤ η4q(1−η)ξz.

Clearly
∑

p|Q |p|−2 ≤ q(−1+η)z for large z, and collecting terms we see that it is enough to show that

qz(ξ−1+η+ηξ) ≤ η4.

We then check that this follows from our upper bound on ξ and our upper and lower bounds on η.
Assume that ξ has been chosen so that H(ξ) ≥ 5/η2. Then we will prove the conclusion of the

corollary when u = zH(ξ)(1 − 10η). We will then prove that we thus obtain all u in the range
claimed, for appropriate choices of ξ permitted by the hypotheses of Theorem 3.1.

If H(ξ) ≥ 5/η2, the latter two inequalities in (3.25) imply that τ ≤ 5η. Using Theorem 3.1, we
conclude that for those ξ satisfying (3.7) there exist integers u± in (zH(ξ)(1−10η), zH(ξ)(1+10η))
such that

E(u+) ≥
1

12ξz log qH(ξ)
exp

(

(1 − 10η2)H(ξ)
)

q−ξu+ ,

with an analogous bound for E(u−). We claim that E(u+) ≥ q−ξu+ . We will justify this by showing
that in fact

(3.26) exp(.9H(ξ)) ≥ 12ξz log qH(ξ).

We know that H(ξ) ≥ η2q(1−η)ξz, and this implies that

ξz log q ≤
1

1 − η
log

(

H(ξ)

η2

)

≤
102

100
log

(

H(ξ)

η2

)

.
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Therefore, (3.26) follows if

exp(.9H(ξ)) ≥ 13 log
(H(ξ)

η2

)

H(ξ),

which follows in turn from our lower bound on H(ξ).
At this point write u = zH(ξ)(1−10η) so that u+ ∈ [u, (1+23η)u]. The bound on H(ξ) in (3.25)

implies that

ξ ≤
1

(1 − η)z log q
log

( 2u

zη2

)

,

and substituting this into the inequality E(u+) ≥ q−ξu+ we see that

E(u+) ≥ q−ξu(1+23η) ≥ exp

(

− u
1

(1 − η)z
log

( 2u

zη2

)

(1 + 23η)

)

,

which yields the inequality (3.23). A similar analysis yields (3.24).
We must now argue that for arbitrary u in the range claimed we may choose ξ so that u =

zH(ξ)(1− 10η). Since H(ξ) is an increasing, continuous function of ξ, and the range of ξ allowed by
Theorem 3.1 is an interval, it suffices to show that some u < 5z/η2 and some u > ez/2 (or, if q = 2,
u > ez/5) can be achieved. We will do this by estimating H(ξ) when ξ is at the endpoints of the
range allowed. Note that our assumption that H(ξ) ≥ 5/η2 is automatically satisfied if u ≥ 5z/η2.

For the lower bound, write ξ0 = z/(6 log q), and we see that

zH(ξ0) ≤ z
∑

p|Q

|p|−1+6/(z log q) ≤ z
∑

deg p∈[(1−η)z,z]

|p|−1+6/(z log q).

By the prime number theorem, this is

(3.27) ≤ z
∑

i∈[(1−η)z,z]

1

i
e6i/z ≤ e6 ηz + 1

(1 − η)
,

and for large z this latter quantity is less than 5z/η2, as desired.
For the upper bound, if q 6= 2 then choose ξ0 = 2

3 log q and the first inequality in (3.25) implies

that H(ξ0) ≥ e−2z/13q(1−η)ξ0 > ez/2 (so that we obtain a value of u > .9zez/2 > ez/2). If q = 2, then
choose ξ0 = 53

100 and similarly H(ξ0) > ez/5.
�

Corollary 3.6. Suppose that Q is divisible only by primes of degrees in [z/2, z]. Assume further

that C is a positive constant such that for ξ satisfying (3.7) we have H(ξ) ≥ Cqξz

ξz log q . Then, if q 6= 2,

there exists a positive constant A depending only on C such that for any u satisfying

(3.28) A < u/z < Ce2z/3/z,

there are integers u± ∈ [u(1 − A
log(u/z) ), u(1 + A

log(u/z) )] satisfying

E(u+) ≥ exp

(

−
u+

z

(

log
(u+

z

)

+ log log
(u+

z

)

+ O(1)
)

)

.

E(u−) ≤ − exp

(

−
u−

z

(

log
(u−

z

)

+ log log
(u−

z

)

+ O(1)
)

)

.

If q = 2, then the same conclusion holds if in place of (3.28) u satisfies A < u/z < C22z/3/z.
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Proof. This will follow from Theorem 3.1. We begin by bounding the quantities H2(ξ) and J(ξ)

from above. We first claim that H2(ξ) ≪
qzξ

(ξz log q)3 . To see this, observe that

H2(ξ) =
∑

p|Q

1 − fQ(p)

|p|
|p|ξ

(

1 −
deg p

z

)2

≤

z
∑

i=⌈z/2⌉

1

i
qiξ

(

1 −
i

z

)2

.

The sum over i is

≪
qzξ

z3

(

q−ξ +

⌊z/2⌋
∑

i=2

q−iξi2
)

≤
qzξ

z3

(

q−ξ +

∫ z/2

t=1

q−tξ(t + 1)2dt
)

,

and in the integral we observe that (t + 1)2 ≪ t2, expand the bounds to (0,∞), and integrate by
parts to deduce our claim.

We also claim that J(ξ) ≪ qzξ

(ξz log q)3 . We have

J(ξ) =
∑

p|Q

1

|p|2
|p|2ξ ≪

1

z

∫ z+1

t=(z/2)−1

q(−1+2ξ)tdt ≪ max(1, q(−1+2ξ)(z+1)),

which we readily check is ≪ qzξ

(ξz log q)3 .

For ξz log q > 6 and z large, it then follows that

5H2(ξ) + 19J(ξ) + 5 ≤ C1
qzξ

(ξz log q)3

for an absolute constant C1. Therefore, our lower bound on H(ξ) implies that τ (see (3.8)) satisfies

(3.29) τ ≤

√

C1/C

ξz log q
.

We now write u = zH(ξ). We have Cqξz

ξz log q ≤ H(ξ) ≪ qξz

ξz log q , where the lower bound is true by

hypothesis, and the upper bound will be proved later in Lemma 4.1. These bounds imply that

(3.30) ξz log q = log(u/z) + log log(u/z) + OC(1).

We also have

H(ξ) − 5H2(ξ) − 5J(ξ) = OC

(u

z

)

,

so that if the hypotheses of Theorem 3.1 are met, we have for some u+ ∈ [u(1− 2τ), u(1 + 2τ)] that

E(u+) ≥
1

12ξz log qH(ξ)
exp

(

− ξu+ log q + OC

(u

z

))

.

We observe that

12ξz log qH(ξ) ≪C
u

z
log

(u

z

)

= exp
(

OC

(u

z

))

,

and, assuming that τ is bounded away from 1/2 (to be proved shortly),

(3.31) log(u+) = log(u) + O(1),

so that putting these estimates together we obtain

(3.32) E(u+) ≥ exp
(

−
u+

z

(

log
(u+

z

)

+ log log
(u+

z

)

+ OC(1)
))

.

The same argument proves the analogous bound for E(u−).
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To conclude our proof, we first prove the upper bound on τ required by (3.8) and (3.31). In
particular, (3.29) and (3.30) imply that there exist constants A1, A2 depending only on C so that
whenever u/z ≥ A1 we have

(3.33) τ <
A2

log(u/z)
<

1

4
.

We must also argue, as in Corollary 3.5, that we may obtain any u in the range (3.28) by choosing
an appropriate ξ satisfying the hypotheses of Theorem 3.1. Again it suffices to check the endpoints.
For the lower endpoint ξ0 = 6

z log q , we have

H
( 6

z log q

)

≤
∑

deg p∈[z/2,z]

1

|p|
|p|ξ ≤

2

z

∑

i∈[z/2,z]

e6i/z ≤
2

z
e6

(z

2
+ 1

)

≤ e6 + 1.

(The last step assumes z ≥ 2e6 + 1.) Thus, u/z = H(ξ) may be chosen as small as max(A1, e
6 + 1).

Conversely, we obtain the upper bound on u/z by choosing ξ0 = min
(

2
3 , 2

3 log q

)

and applying the

lower bound we have assumed on H(ξ). The theorem therefore follows with A := max(A1, 2A2, e
6 +

1). �

4. Limitations on the Equidistribution of Primes

In this section we will prove Theorems 1.3 and 1.4, which guarantee the existence of irregularities
in the distribution of primes in short intervals and in arithmetic progressions with large moduli. We
begin with a lemma which allows us to estimate H(ξ) in the relevant cases.

Lemma 4.1. Assume that α, β, and ξ are given with 0 < α < β ≤ 1 and 6/z < ξ log q < 1. Then
for sufficiently large z we have

(4.1)
∑

deg p∈[αz,βz]

|p|−1+ξ ≍
qξβz

ξz log q
.

Remark. The constants implied by ≫ and “sufficiently large” in the lemma above depend on α and
β but not ξ or q. We will apply this lemma with fixed values of α and β, so that in these applications
the implied constants may be taken to be absolute.

Proof. We first observe that
∑

deg p∈[αz,βz]

|p|−1+ξ ≫
1

z

∑

i∈[αz,βz]

qξi.

To prove the lower bound in (4.1) we use (3.12) to see that

∑

i∈[αz,βz]

qξi ≥
qξ(βz−1) − qξαz

1 − q−ξ
≥

qξβz

ξ log q
q−ξ

(

1 − qξ[(α−β)z+1]
)

.

When z ≥ 6
β−α , the bounds on ξ log q imply that

∑

i∈[αz,βz]

qξi >
qξβz

ξ log q

(

1

e

(

1 − e5(α−β)
)

)

,

as desired. To prove the upper bound in (4.1), we observe (again using (3.12)) that

∑

i∈[αz,βz]

qξi ≤
qξβz

1 − q−ξ
≤

2qξβz

ξ log q
.

�
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Proof of Theorem 1.3. The proof largely follows Maier’s original proof [9]. We construct a polyno-
mial Q and find integers u± so that the number of polynomials of degree u± which are coprime to Q
differs from the expected number. We then use a Maier matrix construction and the prime number
theorem for arithmetic progressions to find short intervals which contain more or fewer primes than
expected.

We prove the result only for f+, the f− case being exactly similar. Define

Q :=
∏

z/2≤deg p≤z

p,

and observe that

(4.2) deg Q <
qz+1

q − 1
,

which in turn implies that

(4.3) φ(Q) < qdeg Q < q2qz

< q2D/5.

We now use Corollary 3.6 to find u+ as mentioned earlier. In the notation of Section 3, we take
fQ(x) to be the characteristic function of those x coprime to Q. Lemma 4.1 implies (with α = 1/2
and β = 1) that the condition on H(ξ) in the corollary is satisfied, with the constant A absolute.
We write

u′ := u
(

1 −
A

log(u/z)

)−1

,

and for any B > A, the condition B < u/z ≪ e2z/3 implies that A < u′/z ≪ e2z/3. Moreover, if B
is sufficiently large, then we will have u′(1 + A/ log(u′/z)) < u(1 + 3A/ log(u/z)). Hence, Corollary
3.6 implies that there exists u+ ∈ (u, u(1 + 3A/ log(u/z))) such that the number of polynomials of
degree u+ coprime to Q is

(4.4) ≥ qu+

[

φ(Q)

qdeg Q
+ exp

(

−
u+

z

(

log
(u+

z

)

+ log log
(u+

z

)

+ O(1)
)

)]

.

We now define a Maier matrix M , with (r, s) entry rQ + s, where r ranges over all monic
polynomials of degree D − deg Q, and s ranges over all monic polynomials of degree u+. The
columns are arithmetic progressions of the form (D;Q, s), and the rows are short intervals of the
form (rQ + qu+ , u+ − 1).

The prime number theorem for arithmetic progressions, in the form (2.9), together with (4.3),
imply that each column with (s,Q) = 1 contains

(4.5)
1

φ(Q)

qD

D
+ O(DqD/2) =

1

φ(Q)

qD

D

(

1 + O(q−D/11)
)

primes. It follows from our lower bound on D and our upper bound on u/z that D/20 ≥ u+/z, so
that q−D/11 ≤ exp(−u+/z). Multiplying (4.4) and (4.5), we see that the total number of primes in
M is therefore

≥
qD

Dφ(Q)
qu+

[

φ(Q)

qdeg Q
+ exp

(

−
u+

z

(

log
(u+

z

)

+ log log
(u+

z

)

+ O(1)
)

)]

.

There are qD−deg Q rows, so upon simplifying, we see that at least one row of M is an interval of
the form (f, u+ − 1) with deg f = D containing

≥
qu+

D

[

1 + exp

(

−
u+

z

(

log
(u+

z

)

+ log log
(u+

z

)

+ O(1)
)

)]
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primes. By subdividing the interval appropriately, we obtain an interval (f, u) with ≥ qu+1

D [1 + · · · ]
primes. We also use the estimates log(u+/z) = log(u/z) + O(1) and u+ = u + O(1/ log(u/z)) to see
that our interval (f, u) contains

≥
qu+1

D

[

1 + exp

(

−
u

z

(

log
(u

z

)

+ log log
(u

z

)

+ O(1)
)

)]

primes, as desired. �

To prove Theorem 1.4, we first need to prove the existence of a modulus Q which satisfies certain
technical constraints.

Lemma 4.2. If l is a polynomial of degree at most e2z/3 (at most 22z/3 if q = 2), then there exists
a polynomial Q which is coprime to l, whose prime factors all have degrees in [z/2, z], and which
satisfies

(4.6)
∑

p|Q

|p|−1+ξ ≫
qξz

ξz log q
.

We observe that if fQ(n) is the characteristic function of those n coprime to Q, (4.6) provides the
lower bound on H(ξ) required by Corollary 3.6.

Proof. We will prove that we may in fact take

(4.7) Q = Q(l) :=
∏

deg p∈[z/2,z]
(p,l)=1

p.

Define a polynomial l0 by

(4.8) l0 :=
∏

deg p∈[z/2,3z/4]

p,

which we will think of as the “worst possible” l. Lemma 4.1 implies that Q(l0) satisfies (4.6), and
we have

deg l0 = (1 + oz(1))
∑

i∈[z/2,3z/4]

qi ≥ (1 + oz(1))q3z/4−1,

which is greater than e2z/3 if q 6= 2, and greater than 22z/3 if q = 2.
If l has degree at most e2z/3 (or 22z/3), then it must have fewer prime divisors of degrees in [z/2, z]

than l0. We may therefore define a polynomial l′ by replacing those prime divisors of l with degrees
in (3z/4, z] with an equal number of primes with degrees in [z/2, 3z/4] which are not already divisors
of l. We see immediately that Q(l0) | Q(l′), and if h(Q) denotes the sum on the left of (4.6), we
have h(Q(l0)) < h(Q(l′)) < h(Q(l)), so that Q(l) also satisfies (4.6) as desired. �

Proof of Theorem 1.4. Again, we will prove only the u+ result, the u− result being exactly similar.
We use Lemma 4.2 to choose Q coprime to l so that the conditions on Q and H(ξ) of Corollary 3.6
are satisfied, and we define u+ as in the proof of Theorem 1.3, so that the number of polynomials
of degree u+ which are coprime to Q is given by (4.4).

We define a Maier matrix M with (r, s) entry rQ + sl, where r ranges over all polynomials with
arbitrary leading coefficient of degree at most D − deg Q, and s ranges over all monic polynomials
of degree u+. The rows are arithmetic progressions (D + u+; l, rQ), and the columns are sets of the
form (sl,D;Q, sl).
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We use Rhin’s result (2.9) and argue as in the proof of Theorem 1.3 to see that each column with
(Q, sl) = 1 contains

1

φ(Q)

qD+1

D + u+
+ O

(

(D + u+)q(D+u+)/2
)

=
1

φ(Q)

qD+1

D + u+

(

1 + O(q−D/11)
)

primes.
Since (Q, l) = 1, we may compute the number of s with (Q, sl) = 1 as in Theorem 1.3. We

conclude that the total number of primes in the matrix is

(4.9) ≥
1

φ(Q)

qD+1

D + u+
qu+

[

φ(Q)

qdeg Q
+ exp

(

−
u+

z

(

log
(u+

z

)

+ log log
(u+

z

)

+ O(1)
)

)]

.

Those rows for which r is coprime to l will contain primes, and we compute that there are

(4.10)
φ(l)

|l|
qD−deg Q+1 + O(τ(sf(l)))

such r. Here |l| = qD, and τ(sf(l)) is the number of divisors of the squarefree kernel of l. To
bound the error term, we observe that l can have at most 2D/z distinct prime divisors: at most

(1 + o(1)) qz+1

(q−1)z < D
z of degree ≤ z, and at most D

z of degree > z. Therefore, τ(sf(l)) ≤ 22D/z. As

D > 2 deg Q we readily compute that the quantity in (4.10) is

(4.11) φ(l)q− deg Q+1(1 + O(q−D/11)).

Dividing (4.9) by (4.11), simplifying, and approximating u+/z by u/z as in Theorem 1.3, we conclude
that at least one row is an arithmetic progression of the form (D+u+; l, a) with (a, l) = 1 containing

(4.12) ≥
qD+u+

φ(l)(D + u+)

[

1 + exp

(

−
u

z

(

log
(u

z

)

+ log log
(u

z

)

+ O(1)
)

)]

primes as desired. �

To justify the remark made after the theorem, we let Q =
∏

deg p∈[z/2,z] p, determine u± as

before, and let l be any prime of degree D − u±. We allow r to range over polynomials of degree
≤ D − u± − deg Q, and then the argument proceeds as before.

5. Maier Matrices and the Uncertainty Principle

In this section we will return to the general setting described in Section 2 and prove Theorems
1.1 and 1.2. We first need several preliminary results. We write

(5.1) ∆m(n) := max
a (mod m)

∣

∣

∣

∣

A(n;m,a) −
fm(a)

|m|γm
A(n)

∣

∣

∣

∣

/

A(n)

φ(m)
,

which measures the failure of polynomials of degree n to be equidistributed modulo m.
Our first result, the analogue of Proposition 2.2 of [8], establishes that ∆m(n) cannot always be

close to zero if fm(x) exhibits oscillatory behavior of the sort described in Section 3.

Proposition 5.1. Let n be large, and assume that coprime monic polynomials m and l are given
with deg m ≤ n/2 and n > deg l ≥ n/2. Then we have

(5.2)
|m|

φ(m)
∆m(n) +

|l|

φ(l)
∆l(n) + O(q−n/8/γl) ≥

∣

∣

∣

∣

1

qn−deg l

∑

deg x=n−deg l

fm(x)

γm
− 1

∣

∣

∣

∣

.
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Proof. We define integers R := n − deg m − 1 and S := n − deg l, and a Maier matrix M with
(r, s) entry rm + sl, where s ranges over monic polynomials of degree exactly S, and r ranges over
polynomials of degree at most R and arbitrary leading coefficient. Then the rows of M are arithmetic
progressions of the form (n; l, rm) and the columns are arithmetic progressions of the form (n;m, sl).

Since fl(r) = fl(rm), the definition (5.1) implies that

A(n; l, rm) =
fl(r)

|l|γl
A(n) + ǫ1∆l(n)

A(n)

φ(l)
,

where ǫ1, ǫ2, etc. will denote real numbers between −1 and 1. Summing over all rows in the matrix,
the total is

(5.3) A(n)
∑

r

fl(r)

|l|γl
+ ǫ2∆l(n)

A(n)

φ(l)
qR+1.

A column-by-column calculation establishes that the total is also

(5.4) A(n)
∑

s

fm(s)

|m|γm
+ ǫ3∆m(n)

A(n)

φ(m)
qS ,

and we equate (5.3) and (5.4) and multiply through by qdeg(lm)−n = |l|
qR+1 = |m|

qS to conclude that

(5.5)
1

qR+1

∑

r

fl(r)

γl
+ ǫ2

|l|

φ(l)
∆l(n) =

1

qS

∑

s

fm(s)

γm
+ ǫ3

|m|

φ(m)
∆m(n).

To evaluate
∑

r fl(r), we write
∑

r fl(r) = (q − 1)
∑′

r fl(r), where the second sum is over monic r.
We write fl(r) =

∑

d|r gl(d) as in (3.5), so that

∑′

r

fl(r) =
∑′

r

∑

d|r

gl(d) =
∑

deg d≤R

gl(d)
∑′

deg r≤R
d|r

1 =
∑

deg d≤R

gl(d)
(qR+1−deg d

q − 1
+ O(1)

)

=
qR+1

q − 1

∑

deg d≤R

gl(d)

|d|
+ O

(

∑

deg d≤R

gl(d)
)

,

so that

(5.6)
∑

r

fl(r) = qR+1
∑

deg d≤R

gl(d)

|d|
+ O

(

(q − 1)
∑

deg d≤R

gl(d)
)

.

The first sum over d is approximately equal to γl, with an error of
∑

deg d>R gl(d)/|d|, and the

combined error is, for large n and C := 1
1−2−2/3 ,

(5.7) ≪ q1+2R/3
∑

d

gl(d)

|d|2/3
≤ q1+2R/3 exp

(

C
∑

p|l

1

|p|2/3

)

≤ q3R/4−2.

The second inequality in (5.7) follows by expanding the sum in an Euler product, using the fact
that gl(d) = 0 for any d ∤ l, using the bound |gl(d)| ≤ 1 for all d, and then summing the resulting
geometric series. The third inequality will follow if exp(C

∑

p|l
1

|p|2/3 ) ≤ qR/13. As R ≥ 1
2 deg l, it is

enough to show that

(5.8)
∑

p|l

1 ≤
log q

26C
deg l.

For log q ≥ 26C this is immediate. For q < exp(26C), we observe that only a uniformly bounded
number of primes may have degree < 52C

log q , and then (5.8) follows for large l.
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We conclude from (5.6) and (5.7) that
∑

r

fl(r) = qR+1
(

γl + O(q−n/8)
)

.

Substituting into (5.5) and rearranging terms, the proposition then follows. �

We now claim a similar result for short intervals. We define

(5.9) ∆̃(n, i) := max
deg f=n

∣

∣

∣

∣

A(f, i) −
A(n)

qn−(i+1)

∣

∣

∣

∣

/

A(n)

qn−(i+1)
,

as a measure of polynomials of degree n to be well-distributed in short intervals. The maximum is
over all intervals (f, i), where f ranges over all polynomials of degree n.

Proposition 5.2. Let n be large, let m be a polynomial with deg m ≤ n/2, and suppose i < n − 1.
Then, we have

(5.10)
|m|

φ(m)
∆m(n) + ∆̃(n, i) ≥

∣

∣

∣

∣

1

qi+1

∑

deg x=i+1

fm(x)

γm
− 1

∣

∣

∣

∣

.

Proof. The proof is similar to that of Proposition 5.1, but simpler. We construct a Maier matrix M ,
whose (r, s)-entry is the polynomial rm + s, where r ranges over all monics of degree n− deg m and
s ranges over all monics of degree i+1. The rows are then short intervals of the form (rm+ qi+1, i),
and the columns are arithmetic progressions of the form (n;m, s). Adding by rows and columns and
equating, we conclude that

qn−deg m

qn−(i+1)

(

1 + ǫ1∆̃(n, i)
)

=
∑

deg s=i+1

fm(s)

|m|γm
+ ǫ2∆m(n)

qi+1

φ(m)
,

similarly to (5.5). (Here ǫ1, ǫ2 are quantities between −1 and 1.) The result then follows by multi-
plying through by qdeg m−(i+1) and rearranging terms. �

We are now ready to prove Theorems 1.1 and 1.2. In each case we will deduce the theorem from
a similar but more technical proposition, along the lines of Theorems 2.4 and 2.5 of [8].

Proposition 5.3. Let z be large, and assume that n ≥ 5qz. Let S be a set of ‘bad’ primes of degrees
< 99z/100. Assume further that for some η satisfying e−z/13 ≤ η ≤ 1/100 we have

(5.11)
∑

deg p∈[(1−η)z,z]

1 − h(p)

|p|
≥ η2.

Then for all 5z/η2 ≤ u ≤ ez/2 (for q = 2, for all 5z/η2 ≤ u ≤ ez/5) we have

max
deg l≤n−u;(l,S)=1

∆l(n) ≥
1

3
exp

(

−
u

z
(1 + 25η) log

(

2u

zη2

))

.

Proof. We write

(5.12) Q :=
∏

deg p∈[(1−η)z,z]

p,

so that we have

deg Q <
qz+1

q − 1
≤ 2qz ≤

n

2
,
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and we also check that |Q|
φ(Q) < 5

4 . We recall the definition of fQ(x) in (2.6), and as Q is squarefree

we have fQ(p) ≤ h(p). It therefore follows that

∑

deg p∈[(1−η)z,z]

1 − fQ(p)

|p|
≥

∑

deg p∈[(1−η)z,z]

1 − h(p)

|p|
≥ η2.

Corollary 3.5 then implies that if ez/2 ≥ u ≥ 5z/η2 (for q = 2, if ez/2 ≥ u ≥ 5z/η2) there exists
an integer λ ∈ [u, u(1 + 23η)] such that

1

qλ

∑

deg x=λ

(fQ(x) − GQ(1)) ≥ exp

(

−
u

z
(1 + 25η) log

(

2u

zη2

))

.

We have that if u ≤ ez/2, then λ ≤ ez/2(1 + 23η) ≤ n
2 and so we may apply Proposition 5.1. We let

l be any prime of degree n− λ, so that l, Q, and S are all coprime, and Proposition 5.1 implies that

(5.13)
|Q|

φ(Q)
∆Q(n) +

|l|

φ(l)
∆l(n) + O(q−n/8/γl) ≥ exp

(

−
u

z
(1 + 25η) log

(

2u

zη2

))

.

We observe that |Q|/φ(Q), |l|/φ(l), and 1/γl are each less than 5/4, and that q−n/8 is much smaller
than the quantity at right, to conclude that for large n

(5.14) ∆Q(n) + ∆l(n) ≥
2

3
exp

(

−
u

z
(1 + 25η) log

(

2u

zη2

))

,

which immediately implies our result.
�

Proof of Theorem 1.1. We first observe that the prime number theorem (2.8) and (1.3) imply that

(5.15)
∑

ηy≤deg p≤y

1 − h(p)

|p|
deg p ≥

2α

3
y.

We now claim that there is some z ∈ [ηy, y] satisfying the condition (5.11). For if not, we have for
each z ∈ [ηy, y] that

∑

deg p∈[(1−η)z,z]

1 − h(p)

|p|
deg p < η2z.

Summing over z ∈ {y, (1 − η)y, (1 − η)2y, . . . }, we obtain a series of intervals covering [ηy, y], and
we conclude that

∑

ηy≤deg p≤y

1 − h(p)

|p|
deg p < ηy,

contradicting (5.15).
We see that the condition η ≥ 13 log y/y of Theorem 1.1 implies that η ≥ e−z/13 for any z ≥ ηy,

by checking this for the minimum values z = ηy and η = 13 log y/y. We also readily check that the
condition on S in Theorem 1.1 implies the one in Proposition 5.3. Theorem 1.1 therefore follows
from Proposition 5.3. �

Proposition 5.4. Let z be large, and assume that n ≥ 5qz. Let S be a set of ‘bad’ primes of degrees
< 99z/100. Assume further that for some η satisfying e−z/13 ≤ η ≤ 1/100 we have

(5.16)
∑

deg p∈[(1−η)z,z]

1 − h(p)

|p|
≥ η2.
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Then for all 5z/η2 ≤ u ≤ ez/2 (for q = 2, for all 5z/η2 ≤ u ≤ ez/5), at least one of the following
statements is true:

(i) For each m which is composed only of primes of degrees in [(1 − η)z, z] that satisfies

(5.17)
∑

p|m

1 − h(p)

|p|
≥ η2,

we have ∆m(n) ≥ 1
2 exp(−u

z (1 + 25η) log(2u/zη2)).

(ii) We have ∆̃(n, u − 1) ≥ 1
2 exp(−u

z (1 + 25η) log(2u/zη2)).

Proof. The proof is essentially the same as the proof of Proposition 5.3. Define Q as in (5.12), and
let m be any divisor of Q which satisfies (5.17). We use Corollary 3.5 as before with m in place of
Q, and Proposition 5.2 then implies that for some i ≥ u we have

(5.18) ∆m(n) + ∆̃(n, i − 1) ≥ exp

(

−
u

z
(1 + 25η) log

(

2u

zη2

))

.

We observe that ∆̃(n, i − 1) ≥ ∆̃(n, u − 1), as any irregular interval may be subdivided into subin-
tervals, at least one of which will be irregular. The result then follows immediately. �

Proof of Theorem 1.2. The proof is very similar to that of Theorem 1.1. Again using (2.8), we have

(5.19)
∑

ηy≤deg p≤⌈(1−η)y⌉

1 − h(p)

|p|
deg p ≥

α

3
y.

If there is no z ∈ [ηy, ⌈(1 − η)y⌉] satisfying the condition (5.16), we obtain a geometric series as
before and this time conclude that

∑

ηy≤deg p≤⌈(1−η)y⌉

1 − h(p)

|p|
deg p ≤ η⌈(1 − η)y⌉ <

α

3
y,

contradicting (5.19).
Thus, let z be such that (5.16) is satisfied, and let m be the product of all primes of degrees in

[(1 − η)z, z]. We have

deg m ≤
∑

deg p≤⌈(1−η)y⌉

deg p ≤ 2q1+(1−η)y,

and the result now follows from Proposition 5.4. �

6. Further Examples and Applications

In this section we discuss several further examples and applications that are interesting and are
simple to describe. Again we are closely following [8], and in the interest of brevity our discussion
in this section will be less precise than before (or that in [8]). We reiterate that we expect that all
of the examples in [8] should have analogies in Fq[t].

6.1. Almost primes. For a fixed r, we define a Pr polynomial to be a square-free polynomial
with at most r distinct irreducible factors, and an Er polynomial to be one with exactly r distinct
irreducible factors. Letting πr(n) denote the number of (monic) Er polynomials of degree n, Cohen
[3] has proved the estimate

(6.1) πr(n) =
qn(log n)r−1

(r − 1)!n
+ O

(

(log n)r−2 qn

n

)

.
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In particular it follows that for each monic polynomial m, the proportion h(m) of Pr and Er poly-
nomials divisible by m is zero. Therefore, these sets of polynomials (and arbitrary subsets thereof)
constitute arithmetic sequences for each r, and Theorems 1.1 and 1.2 apply to these sequences.

6.2. Norms from extensions of Fq(t). Let K be a finite, geometric extension of Fq(t) (that is,
one whose constant field is also Fq(t)). In the notation of Section 2, We let a(x) be the characteristic
function of those polynomials that are norms of integral elements in K. As in Z, a polynomial x is
a norm from K if and only if pe is whenever pe||x. Therefore these polynomials form an arithmetic
sequence, with h(p) = 1 for any prime p which is a norm from K, and h(p) = O(1/|p|) for any
prime which is not. The Chebotarev Density Theorem for function fields (see the work of Murty
and Scherk [11] for an effective version) guarantees that both sets of primes have a positive density,
so that the condition (1.4) is satisfied with a constant α depending on K. Accordingly the sequence
of norms from K is irregularly distributed, as described by Theorems 1.1 and 1.2.

With some effort we expect to be able to prove additional similar results, along lines suggested
by Examples 3, 7, and 8 of [8].

6.3. Limitations on sieve estimates. Let A be a set of monic polynomials in Fq[t], and let P be
a set of primes. Define S(A,P, z) to be the number of elements of A which have no prime factor
p ∈ P with deg p ≤ z. Sieve theory (in Fq[t]) is concerned with estimating S(A,P, z) under certain
natural hypotheses. For example, if A is the set of all monics up to a certain degree D, which is
sufficiently large in relation to z, then it is possible to obtain good estimates for S(A,P, z).

The literature on sieve methods in Fq[t] is much less extensive than that for Z. (But one may see,
for example, the work of Car [2] adapting the Selberg sieve to Fq[t].) In this section we will show
how our framework may be used to prove limitations on the quality of sieve estimates. This is in
analogy to Corollaries 1.1, 1.2, and 6.1 of [8]; for simplicity we will formulate only the analogy of
Corollary 6.1 and we will exclude the case q = 2 (for which a similar result could be obtained with
additional effort).

Corollary 6.1. Suppose that q 6= 2, and Q is a large squarefree polynomial which satisfies

(6.2)
∑

p|Q

deg p

|p|
≥ 39 log log(deg Q),

and define

(6.3) α :=
1

log(deg Q)

∑

p|Q

deg p

|p|
,

and write η := min(1/100, α/3). Then for (deg Q)η/2 ≥ u ≥ 5 log(deg Q)/η2 and any n ≥ 2 deg Q
there exist intervals I± of the form (f±, u) with deg f± = n, such that

(6.4)
∑

f∈I+;(f,Q)=1

1 ≥
φ(Q)

|Q|
|I+|

(

1 + exp

(

−
u

η log(deg Q)
(1 + 25η) log

(

2u

η3 log(deg Q)

))

,

(6.5)
∑

f∈I−;(f,Q)=1

1 ≤
φ(Q)

|Q|
|I−|

(

1 − exp

(

−
u

η log(deg Q)
(1 + 25η) log

(

2u

η3 log(deg Q)

))

.

Proof. As before we will argue only the I+ case. Write y = log(deg Q). We first claim that there
exists some integer z ∈ [ηy, y − 3] such that

(6.6)
∑

deg p∈[(1−η)z,z]
p|Q

1

|p|
≥ η2.
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To prove this, one argues by contradiction; if (6.6) fails, then the prime number theorem and the
argument used in the proof of Theorem 1.1 provide a bound for

∑

p|Q deg p/|p| from above, which

contradicts (6.2).
We may now apply Corollary 3.5. Let a(x) be the characteristic polynomial of those polynomials

coprime to Q and write

(6.7) l :=
∏

deg p∈[(1−η)z,z]
p|Q

p.

Corollary 3.5 then implies that for ez/2 ≥ u ≥ 5z/η2 there exists u+ ≥ u satisfying

(6.8)
∑

deg s=u+

(s,l)=1

1 ≥ qu+
φ(l)

|l|

(

1 + exp

(

−
u

z
(1 + 25η) log

(

2u

zη2

)))

.

We now construct a Maier matrix with entries rl + s, where s ranges over all monic polynomials of
degree u+, and r ranges over all monic polynomials of any fixed degree R ≥ deg Q. We compute
that each column with (s, l) = 1 contains (exactly) qRφ(Q/l)/|Q/l| elements coprime to Q, and
multiplying this by (6.8) and dividing by the number of rows we obtain an interval (rl + qu+ , u+)
satisfying the inequality (6.4). Subdividing this into intervals of the form (f, u) we obtain the
corollary. �
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[2] M. Car, Le théorème de Chen pour Fq [X], Dissertationes Math. 223 (1984), 54 pp.
[3] S. Cohen, Further arithmetical functions in finite fields, Proc. Edinburgh Math. Soc. (2) 16 (1968/1969), 349-363.
[4] B. Conrad, K. Conrad, and R. Gross, Prime specialization in genus 0, preprint.

[5] D. A. Cox, Primes of the form x2 + ny2, Wiley, New York, 1989.
[6] J. B. Friedlander and A. Granville, Limitations to the equi-distribution of primes I, Ann. of Math. 129 (1989),

363-382.
[7] A. Granville, Unexpected irregularities in the distribution of prime numbers, Proceedings of the International
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[13] G. Rhin, Répartition modulo 1 dans un corps de séries formelles sur un corps fini, Dissertationes Math. 95

(1972), 75 pp.
[14] M. Rosen, Number theory in function fields, GTM 210, Springer-Verlag, New York, 2002.
[15] K. Soundararajan, The distribution of prime numbers, Equidistribution in number theory, an introduction, 59-83,

NATO Sci. Ser. II Math. Phys. Chem. 237, Springer, Dordrecht, 2007.

[16] F. Thorne, Irregularities in the distribution of primes in function fields, J. Number Theory, accepted for publi-
cation.

[17] E. Udovina, unpublished manuscript.

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

E-mail address: thorne@math.wisc.edu


