IRREGULARITIES IN THE DISTRIBUTIONS OF PRIMES IN
FUNCTION FIELDS

FRANK THORNE

ABSTRACT. We adapt the Maier matrix method to the polynomial ring F,[t], and
prove analogues of results of Maier [4] and Shiu [10] concerning the distribution of
primes in short intervals.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let F, be the finite field with ¢ elements, and let F,[t] denote the corresponding
polynomial ring in one variable. As is well known (see, e.g., [8]), F,[t] shares many
characteristics with Z. In particular the distribution of primes of F,[¢] is well un-
derstood. The Riemann Hypothesis is known in this setting, and results such as
the Prime Number Theorem for arithmetic progressions are readily proved with the
strongest possible error terms.

Although we expect the distribution of primes in F,[¢] to be highly regular, we can
expect that some irregularities should occur. In the classical case, Maier [4] proved
the surprising result that for any fixed \g > 1,

m(x + (logz)*) — 7(z)

fim sup (log )1 > L
and
Ao
limn g T F og2)™) = 7(@)
T—00 (log ZE))‘O_l

The proof is by the “Maier matrix” method, which we describe as follows; see
Granville’s article [3] for a nice exposition and a survey of related results. Let @ be
a certain product of small primes, and let x1 < x5 and y be integers with y < Q). We
consider the following matrix of integers:

Qri+1 Qry+ 2 Qri+vy
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The columns form arithmetic progressions modulo (), and for those () which meet ap-
propriate conditions on the associated Dirichlet L-functions, each column will contain
roughly the expected number of primes.

Accordingly, we may choose @) to isolate particular behavior of the primes. Maier
proved his result by showing that by varying the relative values of () and y, the matrix
can be made to contain more or fewer primes than expected. In related work, Shiu
[10] proved the existence of arbitrarily long strings of consecutive primes that are all
= a mod m, for any integers a and m with (a,m) = 1. For example, if a = 1, one
takes ) to be the product of m and those small primes which are Z 1 mod m. It
then follows that the majority of primes in the matrix are =1 mod m.

In the present paper, we will introduce a function field version of the Maier matrix
and use it to prove analogues of the aforementioned results of Maier and Shiu. The
proofs will be simple adaptations of the original arguments. Indeed, due to the nice
characteristics of FF[t], we will be able to avoid some of the technical difficulties
occuring for Z.

We will require several sieve-theoretic lemmas which are analogues of classical re-
sults. In several cases these results can be readily found in the literature; in other
cases we will give simple proofs mirroring the classical case.

Setup and notation: We fix a finite field I, throughout. We are interested in
the distribution of primes (i.e., irreducible monic polynomials) in the polynomial ring
F,[t]. Except as noted (and always when referring to primes) we will assume all of
our polynomials to be monic.

For a residue class a modulo m, let 7(n;m, a) denote the number of primes of IF,[t]
of degree n congruent to a modulo m. By the Prime Number Theorem for arithmetic
progressions [8], we have

(11) rmm ) = L o(22),

whenever (a, m) = 1. Here the Euler ¢-function is defined by ¢(m) = |(F,[t]/mF[t])*|.
As an important special case we of course have

(1.2) ) =L+ O(qm),

n n

where 7(n) denotes the number of primes of degree n. Moreover, a simple exact
formula for m(n) is given in [8].

We will be interested in counting the number of primes in short “intervals”. We
distinguish between two types of intervals. The first definition is rather simplistic:
we order all of the monic polynomials of a given degree in lexicographic order, and
define intervals and consecutive primes relative to this order. Theorem 1.2 will be
proved for intervals of this sort.
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Our second definition is more natural in this setting, and a special case of the
above. For a fixed polynomial f and an integer n < deg f, we define the interval
(f,n) to be the set of polynomials f + g, where g ranges over all (not necessary monic
or nonzero) polynomials with deg g < n. We will write 7(f,n) to denote the number
of primes in this interval.

By (1.1), a randomly selected monic polynomial of degree n is prime with proba-
bility about 1/n. Accordingly, we expect that 7(f,n) ~ ¢"™'/deg f for reasonably
large n. The content of our first theorem is that this does not necessarily hold if n is
sufficiently small in relation to deg f.

Theorem 1.1. For any fized \g > 0, we have
([, s(k))

, 7(f,s(k)) minf i

| T, 8k) liminf inf —22 2070 <

lgl—igpdesgl;lik QS(k)Jrl/k ” and ll?—lig deg}:k qs(k)+1/k =
where

s(k) == [Xologk] .

Here [z]| denotes the smallest integer > z, and the inner supremum and infimum
are over all monic polynomials of degree k.

The theorem also holds if s(k) is replaced by any function bounded above by s(k).
The proof is an adaptation of the proof of Maier [4], and appears in Section 4.

We also prove the following analogue of Shiu’s theorem [10] on strings of consecutive
primes:

Theorem 1.2. For arbitrary polynomials m and a with m monic and (a,m) = 1,
there exists a constant D' (depending on q and m) such that for any D > D’ there
erists a string of consecutive primes

Pri1 =DPri2 =  =prpp, =a mod m,

of degree at most D, where k satisfies

1 log D 1/¢(m)
(1.3) k> P(m) ((log log D)Q) .

The implied constant depends only on q.

Here “consecutive” is to be understood with respect to lexicographic order; all of
the p; will be of the form p; = f + g;, where f is fixed and the g; are of comparatively
small degree.

One might ask whether one can prove a similar theorem without reference to a
particular ordering. In particular, one might hope to prove for each k that there
exists an interval (f,n) for some f and n containing at least k primes, such that all
of the primes in (f,n) are = a mod m. The counting argument given in Section 5
does not seem to establish this.
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We remark further that we expect that the following modest improvement to (1.3)
should hold:

1 /log Dlogloglog D\ /¢™
s (og ogloglog ) .

¢(m)\  (loglog D)?
This would follow from a strengthening of Lemma 3.3 along the lines of work of de
Bruijn [1]. For the sake of simplicity we have not attempted this improvement here.

We conclude this section by reviewing our choice of notation. Throughout ¢ will
denote the cardinality of the base field, m will denote a monic polynomial in F[t],
and a will denote a residue class modulo m, represented by a (not necessarily monic)
polynomial of smaller degree. Throughout p will denote a (monic) prime element of
F,[t], and f and ¢ will denote generic elements of F[t]. The prime counting functions
m(n;m,a) and w(f,n) were defined previously in this section. @) will denote a certain
product of small primes, and will be different in Sections 4 and 5. In Section 5, ¢, d, u
will denote positive integers, analogous to the quantities y, z,t appearing in [10].

We will write f(z) > g(x) to mean that f(z) > Cyg(x) for some positive constant
C and sufficiently large x. The constant C' will depend only on ¢, but the range of
allowable x may depend on other variables as noted.
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3. PRELIMINARY LEMMAS

To prove our main results we will require function field versions of several classical
sieve-theoretic results.

Lemma 3.1. (Mertens’ estimate) We have the estimate

(3.1) 11 (1 - qdigp>_1 =ne?(1+ 0,(1)).

degp<n

Moreover, for an arithmetic progression a mod m with (a,m) = 1 we have

(3.2) 11 (1 - ) = MM C(a,m)(1 4 0,(1))

qdeg p

p=a mod m
degp<n

for some constant C'(a,m), which is bounded above and below by absolute constants.
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Proof. The first equation is a special case of Theorem 3 of [9]. To prove the second
equation, we observe that

log ] (1 - qdigpyl =— > w(iym,a)log(l—q7).

p=a mod m 1<i<n
degp<n

Plugging in (1.1), this is
(3.3)

o (Lol (000 - sy (oo

1<i<n 1<i<n

This is equal to (1;2% + C + 0,(1) for some constant C, and the O-term is bounded

uniformly in m and a; the result follows by exponentiation. 0

Lemma 3.2. (Buchstab’s identity) Let ®(r,s) denote the number of (not necessarily
monic) polynomials of degree < r, none of whose prime factors are of degree < s.
Then for r > s, we have

(3.4) O(r,s) = ¢

(s +om),

where the function w(u) is defined by w(u) = 1/u for 1 <u <2, and

u—1
=1 d
uw(u) —1—/1 w(v)dv
for u > 2.

Proof. This is a result of Panario and Richmond ([7], Theorem 3.4), and the function
w(u) is the same as in the classical case (see, e.g., [2], p. 78).

The result in [7] is established for polynomials of degree exactly r, and we deduce
(3.4) by summing over r. In particular, w(u) is bounded above and below and has
bounded derivative, so that the sum over r is well approximated by a geometric
series. 0

We define a related function W¥(r,s) to be the number of monic polynomials of
degree at most r, all of whose prime factors are of degree < s.

Lemma 3.3. Let V(r,s) be defined as above. We have
(3.5) U(r,s) < q"sexp(—r/s).

r+1

In fact, Manstavicius proves in [5] that W(r, s) ~ ‘2_1 p(r/s) when s/y/rlogr — oo,
where p(u) is the Dickman function (see [2], p. 29). This range of r and s is more
than sufficient for our purposes, but for simplicity we will avoid estimating p(u) and
instead give a direct proof following Theorem 5.3.1 of [2].
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Proof. 1f 1/2 < 6 < 1, we have

(3.6) U(r,s) }: 1< }: (d%f)a

deg f<r deg f<r
<@y I (1- =) <@y I (14—
- (g0 ! gy )
deg p<s deg p<s

Here the dashes on the sums restrict to those f counted by W(r,s). We choose
d =1—1/log(¢*) to obtain

U(r,s) < q"exp(—r/s) H <1 + qdigp exp<degp>)'

S

deg p<s

We apply the inequality 1 + x < e” to obtain

(3.7) U(r,s) < q"exp(—r/s) exp( Z qdigp exp(degp>).

S

deg p<s

The sum over p is

1 1 degp
(3.8) > qdegp+0( D s )

deg p<s deg p<s

The main term of (3.8) is log s + O(1) as in (3.3), and the error term is

<0 ¥ = (5 rowm) ) =om

3
degp<s q

Substituting these estimates into (3.7), we obtain (3.5). O

Lemma 3.4. We have
lim w(u) =e7.

U—00

Moreover, the function w(u) — e~ changes sign in any interval [a — 1, a] with a > 2.

Proof. This is originally due to de Bruijn and Iwaniec, and a proof appears in Lemma
4 of [4]. O

Lemma 3.5. For any m, let S(u) denote the set of polynomials of degree u whose
prime factors are all congruent to 1 modulo m. Then we have

(3.9) |S(u)| = (C + 0(1)) g u™ "1/,
where

. 1 1—s\1/p(m degp\—s !
310)  Cpi= lim oo (=) T (1= @)

p=1 mod m
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This is a special case of a result of Manstavicius and Skrabuténas ([6], Theorem
1). We remark that the result is the exact analogue of Lemma 3 of [10].

The implied constant in (3.9) depends on ¢(m). We remark that making this
dependence explicit would allow us to determine the constant D" occuring in Theorem
1.2.

4. PROOF OF THEOREM 1.1

For a fixed degree n, denote

(4.1) Q=0m):= [] »
degp<n
Since there are ~ ¢*/k primes of degree k, we have

n+1
q

g—1

(4.2) degQ= > degpr~q'+q" 4~

degp<n

We introduce a variable s to be chosen later. Our Maier matrix M will have entries
a;j := ¢;Q) + h;, where g; ranges over all monic polynomials of degree 2deg @, and h;
ranges over all (not necessarily monic or nonzero) polynomials of degree < s. The rows
of M are intervals of the form (g;@, s), and the columns are arithmetic progressions

modulo Q. Only those columns for which (@, h;) = 1 will contain primes.
q3 deg Q

By (1.1) each admissible column will contain (1 + 0,(1))35{57qzg Primes. The

admissible columns correspond precisely to those h; whose prime factors are all of
degree > n. Lemma 3.2 then implies that there are

s+1

T—o(s/n)(1+ 0a(1))

of them. The total number of primes in the matrix is therefore

2deg Q+s+1 qdeg Q
w(s/n),

3deg@ no(Q)

and Lemma 3.1 implies that the quotient % converges to €”. Since there are 29 @
rows, it follows that at least one row will contain at least

s+1

3deg Q)

primes. As each row of M consists of ¢! polynomials of degree 3 deg (), the expected
number of primes in this row is %.

To show the first part of Theorem 1.1 for s(k) = [Aglog k], we first show that the
theorem is true with a sequence of values of s bounded below by s(k). In particular,
we use Lemma 3.4 to choose an arbitrarily large o > A\glog ¢ for which w(a) > e™7,

D(s,n) =

(1+ 0n(1))2

(4.3) (1+o0,(1)) e'w(s/n)
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and for each n we define s := [(n + 3)a], so that lim, .. s/n = a. Choosing a
polynomial f,, occuring in the row constructed in (4.3), we see that

: 7(fn, 5)

(4.4) hflnﬂs;}p 1/ deg I,
Although we have defined s in terms of n, we regard it as a function of deg f,, i.e.,
of k in the notation of Theorem 1.1. To show that s > s(deg f,,) for each large n,
we observe that the estimate (4.2) implies that deg f,, = 3deg@ < ¢", so that
Ao log(deg fr,) < Ao(n+3)logq < a(n+3) < s.

To see that we can replace s with s(deg f,) in (4.4), we observe that the rows
chosen in (4.3) may be subdivided into intervals of the form (f, + hj, s(deg f,)),
for various polynomials h; of degree < s. One of these will contain at least (1 +

On(l))%e%}(s /n) primes, and the first part of Theorem 1.1 follows.
To prove the second part of Theorem 1.1, we choose a row containing at most the
number of primes given in (4.3), choose an « for which w(a) < e™7, and repeat the

same argument.

> w(a)e? > 1.

5. PROOF OF THEOREM 1.2

The proof of Theorem 1.2 is a straightforward adaptation of Shiu’s proof [10]. We
may assume that ¢(m) > 1, and we introduce a variable ¢, as well as variables d
and u which will be chosen as unbounded, nondecreasing functions of ¢ satisfying
d <u=o(c). For a # 1 we define a set of primes P by

{p:degp<c¢,p#1,a mod m}
(5.1) P:=< U{p:u<degp<c¢,p=1 modm}
U{p:degp<c+d—up=a modm}.

For the case a = 1 we define instead

(5.2) p._ [ {p:degp<cp#1 modm}
. : U{p:u<degp<c+d—up=1 modm}.

Although the latter definition does not yield optimal bounds for a = 1, it simplifies
our treatment by allowing us to treat both cases simultaneously.
We define a polynomial @) by

(5.3) Q := mtetit! Hp,
pEP
and we define a Maier matrix M consisting of the following set of integers:

(5.4) M= | U er+g

deg f=2deg Q deg g=c+d
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Here f and g range over monic polynomials of the indicated degrees. We arrange the
g in lexicographic order, and as t“t9+1|Q, this ensures that each row is in lexicographic
order.

Each row of M will be an interval of the form (Q f+t°*% c+d—1), and each column
of M will be the arithmetic progression of all monic polynomials of degree 3deg @
which are congruent to a fixed g modulo Q. By (1.1), each column containing primes
will contain asymptotically the same number of primes. Moreover, whether or not a
particular element Q) f 4 g is congruent to a modulo m depends only on g, and our
choice of @ will ensure that most g with (g,Q) = 1 fall into the desired congruence
class.

We define sets

(5.5) S:={h:degh=c+d,(h,Q)=1,h=a mod m},
:={h:degh=c+d,(h,Q)=1,h#a mod m}.
We will show that |S| is much larger than |T'| for appropriate choices of u, ¢, and d.
We assume throughout that c is sufficiently large in relation to ¢ and m; the same
will then also be true of u and d. With this restriction, constants implied by < and
> will depend only on q.
To estimate |S|, we observe that S contains all products of the form pn, where

p=a mod m and degp > c+ d — u, and n is a product of primes =1 mod m. We
thus have

u—1
151 = 3" w(e+ d — iz m, a)S(i),
i=0
where S(i) is the quantity defined in Lemma 3.5. We use the prime number theorem
for arithmetic progressions and Lemma 3.5 to conclude that

u—1

C 1 1
5.6 S>> gty :
( ) ‘ | > ¢(m>q g c—+d—qil=1/em)

Here C,, is the constant defined in (3.10), and iy is a lower bound (depending on m)
for those ¢ for which (3.9) gives an asymptotic estimate.

We have ¢ +d — i ~ ¢+ d because u = o(c), and we approximate the remaining
sum over ¢ by the corresponding integral to obtain

Om c+d u—1 1 c+d '
(5.7) |S’ > 9 / Wdt =C,, q ((u _ 1)1/¢>(m) _ Zol/ﬁb(m))’

p(m)c+d J;,, 17V c+d
and under our assumption that w is sufficiently large we obtain
¢ oom)
5.8 S| > C), .
(58) 51> Co L

To estimate |7T'|, we split 7" into two sets 7" and T". T" will consist of elements
having some prime factor of degree > ¢ and all other prime factors = 1 mod m.
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(Note: these other factors will then automatically have degree < w.) T" will be
empty if a = 1, and will otherwise consist of elements whose prime factors are all = 1
mod m and of degree < u.

To estimate |T"| we observe that

QL
—

1T'| < ‘ m(c+d—1)S(7),

)

Il
=)

and therefore
d—1

|T/| < Cch+d Z

i=io

Here we have estimated S(i) trivially for i < i5. We estimate this sum in the same
way as (5.7) and see that for sufficiently large ¢ we have

qc—l—d

c+d

To estimate |T"| we fix u = |¢/2logc| (here || denotes the greatest integer < x)
and observe that Lemma 3.3 then implies that

1 1 ' qc+d
T + 29 .
c+d—iil-1/em) c+d

IT'| < ¢(1m)Cpy Lo,

c+d>

IT"| < ¢“™ exp<—210gc

2logc
which is substantially smaller than |7”|. We conclude that
qc+d

c+d

As in [10], we split into two cases. Either the majority of primes = ¢ mod m
(henceforth “good” primes) occur in rows containing “bad” primes # a mod m, or
they occur in rows not containing any bad primes. In the former case at least one
row containing a bad prime contains at least > |S|/|T’| times as many good primes
as bad, and hence contains a string of length > m(u/ d)/¢0™) In the latter case

IT| < ¢(m)Chy, dH/om).

there is a row containing no bad primes, and > 7/¢?%¢? good primes, where 7’

denotes the total number of good primes in the matrix. From our estimation of |5

we conclude that . .
ey 4 €Q

7 > Omc+du m'

We incorporate the estimate

(5.9) degQ < (degm +c+d+1)+ ¢ +q¢ '+ < ¢

and Lemma 3.1 implies that we have (for either a # 1 or a = 1)
e m

1/¢(m)
> cl—2/¢(m) E (C +d— u)1/¢(m) > Cu_l/ﬂﬁ(m)'
Q) ~ o(m) u
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We put these estimates together to conclude that our row contains > C,,q¢ good
primes and no bad primes.
As one of our two cases must occur, M will contain a progression of primes of

length
1 punem)
> mm(m (E) ,Cmq )

With the choices u = |¢/2logc| and d = |log c| we obtain a progression of length

1

1 IS ¢(m)
> o (e)

Theorem 1.2 follows, with the quantitative estimate (1.3) following from (5.9).
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