Study Guide for AP Calc - Derivatives

Unit 2 - Limits and Continuity

- The limit of a function is the y value that the graph becomes closer to as the x value approaches a specific value, c
 - The graph must approach the same y value from both sides for the limit to exist
 - $\lim f(x) = limit$ 0
- Limit Definition of the Derivative
 - $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = mtan$
- Alternative Limit Definition of the Derivative

$$0 \qquad \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = mtan$$

- Squeeze Theorem
 - o If $f(x) \le g(x) \le h(x)$ when x is near $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = limit$ then $\lim_{x \to a} g(x) = limit$
- Intermediate Value Theorem
 - o If f is continuous on the interval [a,b], then every y value between is reached at some point
- Non Differentiable Instances
 - Cusp 0
 - 0 **Sharp Corner**
 - **Vertical Tangent** 0
 - Discontinuity

Unit 3 - Rules/Techniques of Differentiation

- - If $f(x) = x^n$ where n is a rational number, then $f'(x) = nx^{n-1}$

$$f(x) = x^3$$

$$f'(x) = 3x$$

- **Product Rule**
 - f(x) * g(x) derivative is equal to f(x) * g'(x) + f'(x) * g(x)

$$f(y) = (\Delta x^2)(3x)$$

$$f(x) = (4x^2)(3x) f'(x) = (4x^2)(3) + (8x)(3x)$$

$$f'(x) = 36x^2$$

- Quotient Rule
 - $\frac{f(x)}{g(x)}$ derivative is equal to $\frac{g(x)*f'(x)-g'(x)*f(x)}{g(x)^2}$

$$f(x) = \frac{3x+1}{2}$$

$$f'(x) = \frac{(x^2 - 1)(3) - (3x + 1)(2x)}{(x^2 - 1)^2}$$

$$f'(x) = \frac{-3x^2 - 2x - 3}{x^4 - 2x^2 + 1}$$

- Chain Rule
 - Used to find derivative for a quantity raised to a power 0
 - f(g(x)) = f'(g(x)) * g'(x)

$$f(x) = (2x+1)^3$$

$$f'(x) = 3(2x+1)^2 * (2)$$

$$f'(x) = 6(2x+1)^2$$

Trigonometric Derivatives

cos(x)
555(7.7)
-sin(x)
sec²(x)
-csc(x) * cot(x)
sec(x) * tan(x)
-csc²(x)

Inverse Trigonometric Derivatives

0	$f(x) = \sin^{-1}(x)$	$ O \qquad f'(x) = \frac{1}{\sqrt{1-x^2}} $
0	$f(x) = \cos^{-1}(x)$	$O \qquad f'(x) = \frac{-1}{\sqrt{1-x^2}}$
0	$f(x) = tan^{-1}(x)$	$O \qquad f'(x) = \frac{1}{1+x^2}$
0	$f(x) = csc^{-1}(x)$	o $f'(x) = \frac{-1}{ x \sqrt{x^2 - 1}}$
0	$f(x) = \sec^{-1}(x)$	$o f'(x) = \frac{1}{ x \sqrt{x^2 - 1}}$
0	$f(x) = \cot^{-1}(x)$	o $f'(x) = \frac{-1}{1+x^2}$

- Logarithmic and Exponential Derivatives
 - $f(x) = a^x$ then the derivative would be $f'(x) = a^x \ln(a)$

$$f(x) = 2^x$$

$$f'(x) = 2^x \ln(2)$$

The derivative of natural base exis itself

$$f'(x) = e^x$$

 $y = \log_a x$ has a derivative of $y' = \frac{f'(x)}{f(x)*lna}$

$$y' = \frac{2x}{x^2 \times ln_{10}}$$

 $y = \log x^2 \qquad y' = \frac{2x}{x^2 \cdot \ln 10}$ The derivative of the natural log ln(x) is $y' = \frac{f'(x)}{f(x)}$

$$y = \ln(x^3 + 1)$$

$$y' = \frac{3x}{x^3}$$

- Derivative of f⁻¹(x)
 - Swap variables and solve for derivative

$$y = \sqrt[3]{3x - 5}$$

$$x = \sqrt[3]{3y - 5}$$

$$V = \frac{x^3 + 5}{x^3 + 5}$$

$$y' = \frac{9x^2 - x^3 - 5}{9}$$

- The slope of the derivative of f(x) is equal to the slope of the derivative of $f^{-1}(x)$ at partner points
- Differentiability vs. Continuity
 - Differentiable graphs must be continuous, but continuous graphs are not always differentiable
 - Not differentiable at vertical tangent, cusp, sharp corner, or discontinuity. Can still be continuous at cusp, corner, or vertical tangent.

Unit 4 - Concepts Involving the Derivative

- First Derivative Test to Determine Increasing/Decreasing intervals and Local Extrema
 - Find the derivative and its critical values (equal to zero or undefined), then place values on a number line
 - Choose a point in each interval and plug into first derivative equation to determine if it is positive or negative
 - Local extrema at critical points where slope changes sign
 - Positive to negative means local max
 - Negative to positive means local min
 - Increasing at Positive intervals and decreasing at negative intervals
- Second Derivative Test to Determine Concavity and Points of Inflection
 - o Find second derivative and its critical values (equal to zero or undefined), then place on number line
 - Choose a point in each interval and plug into second derivative equation to determine if it is positive or negative
 - Points of inflection at critical points where sign changes
 - Concave up at positive intervals and concave down at negative intervals
- Summary of Connections from Graph of a Derivative
 - When graph is positive, the original is increasing, and when it is negative, the original is decreasing
 - o Where graph crosses the x axis (y=0), there is a horizontal tangent
 - Crosses above to below means local max and crosses below to above means local min
 - o Where graph is increasing the original is concave up, where graph is decreasing the original is concave down
 - o Local extrema are points of inflection on original graph
- Mean Value Theorem
 - o If f is continuous on a closed interval and differentiable on its interior, then there is at least one number where $\frac{f(b)-f(a)}{b-a}=f'(c)$
 - Find derivative of function
 - Find slope between a and b (msec)
 - Set equal and solve for x
- Extreme Value Theorem (Absolute Extrema)
 - o Absolute extrema are max and min values of function in a specified interval
 - o If f is continuous on a closed interval, then f attains both max and min value
 - Find derivative and critical values
 - Create table with critical values and plug into original equation
 - Identify absolute max and min based on y values
- Relationship Between Position, Velocity, and Acceleration
 - Position function s(t) calculates change as an average and change at an instant
 - Velocity function v(t) calculates change in position over time with direction
 - Positive if moving up or right
 - Negative if moving down or left
 - Acceleration function a(t) calculates change in velocity over time
- Total Distance vs. Displacement
 - Total distance is the total amount traveled
 - Displacement is the difference between where you start and where you end
- · Speeding Up vs. Slowing Down
 - o Speeding up at intervals where velocity and acceleration are both positive or both negative
 - Slowing down at intervals where velocity is positive, and acceleration is negative or vice versa

Unit 5 - Application of Derivatives

0

- L'Hopital's Rule
 - Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval containing a, and that $g'(x) \neq 0$ on the interval if $x \neq a$. Then, $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$
 - o Indeterminate Forms (must result in one of these during direct substitution to apply rule)

$$0, \frac{\pm \infty}{0}, \frac{\pm \infty}{\pm \infty}, \infty - \infty, 0 * \infty, 0^{0}, 1^{\infty}, \infty^{0}$$

$$\lim \frac{\sin x}{0} = 0 \qquad \lim \frac{\cos x}{1} = 1$$

- Summary of Linear Approximation Method
 - o Find equation of tangent line at a close x value near the value you would like to approximate
 - y-y1 = m (x-x1)
 - o Place value into equation and solve
- Related Rates Summary
 - o Situation where two or more variables that are closely related are changing with respect to time
 - Make a drawing and state the given
 - Determine rates of change given in context of the problem
 - Determine an equation that is appropriate for conditions of the problem
 - Find missing values for the moment in time being discussed
 - Find derivative of equation implicitly with respect to time
 - Substitute all known information and solve for desired rate of change
- Optimization Summary
 - Find values of controllable factors determining the behavior of a system that maximize productivity or minimize waste
 - State the given
 - Write a formula for maximized or minimized values
 - Rewrite formula in terms of a single variable
 - Find derivative and critical values
 - Find the maximum or minimum value