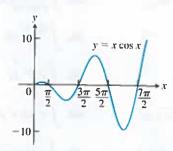

Theory and Examples


- 53. Finding area Find the area of the region enclosed by the curve $y = x \sin x$ and the x-axis (see the accompanying figure) for
 - a. $0 \le x \le \pi$.
 - b. $\pi \leq x \leq 2\pi$.
 - c. $2\pi \le x \le 3\pi$.
 - **d.** What pattern do you see here? What is the area between the curve and the x-axis for $n\pi \le x \le (n+1)\pi$, n an arbitrary nonnegative integer? Give reasons for your answer.

- 54. Finding area Find the area of the region enclosed by the curve $y = x \cos x$ and the x-axis (see the accompanying figure) for
 - a. $\pi/2 \le x \le 3\pi/2$.
 - **b.** $3\pi/2 \le x \le 5\pi/2$.
 - c. $5\pi/2 \le x \le 7\pi/2$.
 - **d.** What pattern do you see? What is the area between the curve and the x-axis for

$$\left(\frac{2n-1}{2}\right)\pi \leq x \leq \left(\frac{2n+1}{2}\right)\pi,$$

n an arbitrary positive integer? Give reasons for your answer.

- **55. Finding volume** Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve $y = e^x$, and the line $x = \ln 2$ about the line $x = \ln 2$.
- **56. Finding volume** Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve $y = e^{-x}$, and the line x = 1
 - a. about the y-axis.
 - **b.** about the line x = 1.
- 57. Finding volume Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes and the curve $y = \cos x$, $0 \le x \le \pi/2$, about
 - a. the y-axis.
 - b. the line $x = \pi/2$.

- 58. Finding volume Find the volume of the solid generated revolving the region bounded by the x-axis and the $y = x \sin x$, $0 \le x \le \pi$, about
 - a. the y-axis.
 - b. the line $x = \pi$.

(See Exercise 53 for a graph.)

- 59. Consider the region bounded by the graphs of $y = \ln x$ and x = e.
 - a. Find the area of the region.
 - b. Find the volume of the solid formed by revolving this about the x-axis.
 - c. Find the volume of the solid formed by revolving this about the line x = -2.
 - d. Find the centroid of the region.
- 60. Consider the region bounded by the graphs of $y = \tan^{-1} x$ and x = 1.
 - a. Find the area of the region.
 - Find the volume of the solid formed by revolving this about the y-axis.
- **61. Average value** A retarding force, symbolized by the dathe accompanying figure, slows the motion of the weighter so that the mass's position at time *t* is

$$y = 2e^{-t}\cos t, \qquad t \ge 0.$$

Find the average value of y over the interval $0 \le t \le 2\pi$

62. Average value In a mass-spring-dashpot system like the Exercise 61, the mass's position at time *t* is

$$y = 4e^{-t}(\sin t - \cos t), \quad t \ge 0.$$

Find the average value of y over the interval $0 \le t \le 2\pi$.

Reduction Formulas

In Exercises 63-67, use integration by parts to establish the recognition

$$63. \int x^n \cos x \, dx = x^n \sin x - n \int x^{n-1} \sin x \, dx$$

64.
$$\int x^n \sin x \, dx = -x^n \cos x + n \int x^{n-1} \cos x \, dx$$