Final Examination - Math 531

Due Saturday, December 15

(1) Prove that a quadrilateral is a parallelogram if and only if its diagonals bisect each other.
(2) Let $A X$ be the angle bisector of $\angle A$ in $\triangle A B C$. Prove that

$$
\begin{equation*}
\frac{B X}{X C}=\frac{A B}{A C} \tag{1}
\end{equation*}
$$

(3) Let P be a point inside a circle, and let $X Y$ and $U V$ be two chords going through P. Prove that $P X \cdot P Y=P U \cdot P V$.
(4) Given acute angled $\triangle A B C$ as in Figure III.1, extend the altitudes from A, B, C to meet the circumcircle at X, Y, and Z respectively. Prove that $A X$ bisects $\angle Z X Y$.
Hint. Look for congruent triangles.
(5) Suppose that $A X$ is a median of a triangle, and G is the centroid. Prove that $A G=2 G X$.
(6) Prove that the three angle bisectors of a triangle are concurrent.
(7) Let A, B, C, D be four collinear points and suppose that P is a point not on the line through them. Prove that

$$
c r(A, B, C, D)=\frac{\sin (\angle A P C) \sin (\angle B P D)}{\sin (\angle A P D) \sin (\angle B P C)}
$$

