
Selected Homework Solutions - Math 574, Frank Thorne

1. (4.5, 12). If a and b are rational numbers, b 6= 0, and r is an irrational number, then prove that
a + br is irrational.

Proof. We argue by contradiction. Suppose that a + br is rational. Then br = (a + br)− a is
rational, being a difference of two rational numbers. Also, r = br

b
is rational, being a quotient of

two rational numbers (the denominator of which is not zero). However, we assumed that r was
irrational, and r cannot be both rational and irrational.

This is a contradiction, and therefore a + br is irrational.
2. (4.5, 15). Prove that if a, b, and c are integers and a2 + b2 = c2, then at least one of a and b is

even.
Proof: We argue by contradiction. Suppose that both a and b are odd. Then we can write

a = 2m + 1 and b = 2n + 1 for integers m and n, and therefore

a2 + b2 = (2m + 1)2 + (2n + 1)2 = 4m2 + 4m + 1 + 4n2 + 4n + 1 = 4(m2 + m + n2 + n) + 2.

We divide into two cases: c is even, or c is odd. If c is odd, then so is c2. However, the
calculation above showed that a2 + b2 is even, and this is a contradiction. If c is even, then it
is divisible by 2, and so c2 is divisible by 4. However, a2 + b2 is equal to a multiple of 4 plus 2,
and so it is not divisible by 4. In either case we have a contradiction. Therefore, at least one of
a and b is even.

3. Prove that
√

2 + 2 is irrational.
Proof. We use the results, previously proved, that

√
2 is irrational, and that the sum of two

rational numbers is rational.
Suppose to the contrary that

√
2 + 2 is rational. Then

√
2 = −2 + (

√
2 + 2) is the sum

of two rational numbers, hence rational. However, we know that it’s irrational, and this is a
contradiction. Therefore

√
2 + 2 is irrational.

4. Prove that 3
√

3 irrational.
We have to argue the following claim first: Suppose that for some integer n, n3 is divisible by

3. Then n is also divisible by 3.
To prove this, we argue by contradiction. Suppose that n is not divisible by 3. In this case we

can write n = 3a + 1 or n = 3a + 2 for some integer a, by the division-with-remainder theorem.
If n = 3a + 1, then

n3 = (3a + 1)3 = 27a3 + 27a2 + 9a + 1 = 3(9a3 + 9a2 + 3a) + 1,

so that n3 is of the form 3b + 1, hence it is not divisible by 3.
If n = 3a + 2, then

n3 = (3a + 2)3 = 27a3 + 54a2 + 36a + 8 = 3(9a3 + 18a2 + 12a + 2) + 2,

so that n3 is of the form 3b + 1, hence it is not divisible by 3.
In either case, we get a contradiction. Therefore n is divisible by 3.
Now we prove the main claim. Suppose to the contrary that we can write 3

√
3 as a fraction a

b
,

where a and b have no common factor. Then, cubing, we have 3 = a3

b3
and therefore 3b3 = a3.

Thus, a3 is divisible by 3 and so a is also (by the claim argued above). Write a = 3c for some
integer c so that 3b3 = 27c3, and thus b3 = 9c3. Therefore b3 is divisible by 3, and hence b is also.

But then a and b are both divisible by 3, contradicting the assumption that they have no
common factor.

5. Prove that limx→2 0 = 0. Suppose that any ε > 0 is given. Then let δ = 37. (Note: Any choice
of δ whatsoever works.) Then, we must prove that whenever |x − 2| < δ, we have |0 − 0| < ε.
However, the latter conclusion is true regardless of x, and so this holds. Therefore, limx→2 0 = 0.

6. Prove that limx→2−2x− 9 = −13.
Suppose ε > 0 is given.
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[Aside: This is not needed in the proof, but this calculation tells you what δ to pick. If
−2x− 9 = −13 + ε, then x = 2− ε/2, and if −2x− 9 = −13− ε, then x = 2 + ε/2. So we should
choose δ = ε/2, or any smaller δ.]

Let δ = ε/2, and suppose that |x − 2| < δ. Then this means that 2 − δ < x < 2 + δ, so that
2 − ε/2 < x < 2 + ε/2. Multiplying by −2 and subtracting 9, we obtain −13 + ε > −2x − 9 >
−13− ε, so that |(−2x− 9)− (−13)| < ε whenever |x− 2| < δ, as required.

7. Prove that limx→π/4 sin(x) 6= 1. Let ε = 0.99 −
√

3
2

, and suppose that some δ > 0 is given. We
must prove that there exists x such that |x− π/4| < δ and | sin(x)− 1| > ε.

We choose x = min(π/3, π/4 + δ/2). Then |x − π/4| < δ and x is between π/4 and π/3, so
that sin(x) is between

√
2/2 and

√
3/2. This implies that 1− sin(x) is at least 1−

√
3/2, which

is greater than ε = 0.99−
√

3
2

. Therefore, limx→π/4 sin(x) 6= 1.
8. (5.3, 18). Prove that 5n + 9 < 6n, for integers n ≥ 2.

Proof. Let P (n) be the statement 5n + 9 < 6n. Observe that P (2) is true because 52 + 9 =
34 < 36 = 6n.

Now, suppose that P (n) is true for some n. Then, we have the inequalities

5n+1 + 9 = 5 · 5n + 9 < 5 · (5n + 9) < 5 · 6n < 6 · 6n = 6n+1.

Therefore, P (n + 1) is true, and the result follows by induction.
Comment: When writing induction proofs, please do not write down P (n + 1) and then write

a chain of statements leading to something you know is true. Although this can often be turned
into a correct proof, this is backwards (it is the converse of what you are trying to do).

9. (6.2, 9) Prove that for any sets A, B, C, (A−B) ∪ (C −B) = (A ∪ C)−B.
Proof. First, we prove that (A−B)∪(C−B) ⊆ (A∪C)−B. Suppose that x ∈ (A−B)∪(C−B).

Then, either x is in A− B or x is in C − B (or both). If x is in A− B, then x ∈ A and x 6∈ B.
Since x ∈ A, we have x ∈ (A ∪ C), and therefore x ∈ (A ∪ C)−B.

If x is in C − B, then x ∈ C and x 6∈ B. Since x ∈ C, we have x ∈ (A ∪ C), and therefore
x ∈ (A ∪ C)−B.

Since x ∈ (A∪C)−B in either case, we can conclude that (A−B)∪ (C −B) ⊆ (A∪C)−B.
Now, we must prove that (A ∪ C)−B ⊆ (A−B) ∪ (C −B). Suppose that x ∈ (A ∪ C)−B.

Then, x ∈ A ∪ C, and x 6∈ B.
Since x ∈ A ∪ C, either x ∈ A or x ∈ C (or both). If x ∈ A, since x 6∈ B, we have x ∈ A−B.

If x ∈ C, since x 6∈ B, we have x ∈ C − B. In either case, x is in at least one of A − B and
C −B, and therefore (A ∪ C)−B ⊆ (A−B) ∪ (C −B).

It thus follows that (A ∪ C)−B = (A−B) ∪ (C −B).
[Note: Sometimes I wrote ‘is in’ in English, and sometimes I used ∈. These mean the same

thing and are interchangeable.]


