Homework 5 - Math 574, Frank Thorne (thornef@mailbox.sc.edu)

Due Friday, February 24 at 5:00.

There are shortcuts on this week's homework. If this starts to get tedious and repetitive, look for them!

For epsilon-delta problems, if you graph your function you may assume that a function f(x) is increasing on an interval [a, b] if it is clearly visible from your graph. For example, $f(x) = x^2$ is increasing on [1, 2].

- 1. Prove that $\sqrt{3}$ is irrational.
- 2. Prove that $\sqrt{5}$ is irrational.
- 3. Prove that $\sqrt{6}$ is irrational.
- 4. Prove that $\sqrt{2} + 2$ is irrational.
- 5. Prove that $48\sqrt{5} + 2$ is irrational.
- 6. Prove that $\sqrt[3]{2}$ is irrational.
- 7. Prove that $\sqrt[3]{3}$ is irrational.
- 8. Prove that $\lim_{x\to 2} 0 = 0$.
- 9. Prove that $\lim_{x\to 5} 3x = 15$.
- 10. Prove that $\lim_{x\to 3} 4x 1 = 11$.
- 11. Prove that $\lim_{x\to 2} -2x 9 = -13$.
- 12. Prove that $\lim_{x\to 5} 0 \neq 1$.
- 13. Prove that $\lim_{x\to 4} 2x + 1 \neq 10$.
- 14. Prove that $\lim_{x\to 2} x^2 \neq 3$.
- 15. Prove that $\lim_{x\to\frac{\pi}{4}}\sin(x)\neq 1$.
- 16. A few additional problems will be added later (there will be a few more problems from Chapter 4 of Epp's book.)

Bonus (harder $\epsilon - \delta$ proofs)

- 1. (2 points) Prove that $\lim_{x\to 3} x^4 = 81$.
- 2. (2 points) Prove that $\lim_{x\to 0} \sin(1/x)$ does not exist.
- 3. (2 points) Prove that $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$. (Do not use L'Hopital's Rule.)