Exercise Set 1 - Arithmetic Geometry, Frank Thorne (thorne@math.sc.edu)

Due Monday, February 3, 2016

Instructions. Either do all of 1-4, or do 5.
(1) Let V denote the circle $x^{2}+y^{2}=1, P=\left(\frac{3}{5}, \frac{4}{5}\right) \in V(\mathbb{Q})$, and L the line $x=0$. Let $\phi: V \rightarrow L$ denote the map which associates to any $Q \in P$ the intersection of the lines L and $P Q$.
(a) Prove that, possibly apart from finitely many points, ϕ defines a bijection between $V(K)$ and $L(K)$ for any subfield of \mathbb{R}. What points of L correspond to the Pythagorean triples $5^{2}+12^{2}=13^{2}$ and $8^{2}+15^{2}=17^{2} ?$
(b) Prove that both ϕ and its inverse are both rational functions.
(c) If your earlier bijection excluded the point P itself, define 'the line between P and P ' to be the tangent line to V at P and prove that this extends the bijection to P and one point on L which you previously omitted.
(2) Now consider the version of the 'Pythagorean triples parametrization' presented in lecture: let V denote the circle $x^{2}+y^{2}=1, P=(0,1) \in V(\mathbb{Q})$, and L the line $x=0$. Let ϕ be as before.
(a) Write down ϕ and its inverse explicitly as rational functions (e.g., quotients of polynomials in the coefficients).
(b) Now let V^{\prime} denote the circle $X^{2}+Y^{2}=Z^{2}$ in the projective plane \mathbb{P}^{2}. Does it contain any points not on V ?
(c) Considering ϕ now as a map to the projective line \mathbb{P}^{1}, write down ϕ and its inverse as polynomial functions in the coefficients. Are they defined for all points of V and \mathbb{P}^{1}, or are there finitely many exceptions?
(3) Let p be a prime. Prove the following elementary properties of p-adic valuations which were stated in class. (Here x and y denote arbitrary rational numbers.)
(a) $v_{p}(x y)=v_{p}(x) v_{p}(y)$,
(b) $v_{p}(x+y) \geq \min \left\{v_{p}(x), v_{p}(y)\right\}$,
(c) $v_{p}(x+y)=\min \left\{v_{p}(x), v_{p}(y)\right\}$ if $v_{p}(x) \neq v_{p}(y)$.
(4) Prove, using a p-adic valuation argument, that the conic $x^{2}+y^{2}=p$ has no rational solutions for any $p \equiv 3 \quad(\bmod 4)$.
(5) Let V be a projective plane smooth conic defined over a field K of characteristic not equal to 2 . Assume that V has a K-rational point P. Generalize the 'stereographic projection' argument to exhibit mutually inverse morphisms $\phi: V \rightarrow \mathbb{P}^{1}$ and $\phi^{-1}: \mathbb{P}^{1} \rightarrow V$, the defining polynomials of which are defined over K.
This proves that V is isomorphic to \mathbb{P}^{1} over K.

