Exercise Set 3 - Arithmetic Geometry, Frank Thorne (thorne@math.sc.edu)

Due Wednesday, February 26, 2016

Instructions. Do either 1-3 or 4.
(1) Given an elliptic curve with homogeneous equation $f(X, Y, Z)=Y^{2} Z-\left(X^{3}+A X Z^{2}+B Z^{3}\right)=0$, and a point $P=\left[X_{0}: Y_{0}: Z_{0}\right]$, compute the tangent line to the curve at P in two different ways:
(a) The tangent line is given by

$$
X \frac{\partial f}{\partial X}(P)+Y \frac{\partial f}{\partial Y}(P)+Z \frac{\partial f}{\partial Y}(P)=0
$$

(b) Dehomongenizing, if $Z_{0} \neq 0$, the 'usual' tangent line in the sense of first year calculus.

Prove that they give the same answer.
(2) Now suppose that C is a curve in \mathbb{A}^{3} (affine 3 -space) given by the vanishing of any homogeneous polynomial $f(x, y, z)$. If $P=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{C}$, define the tangent plane to P by the equation

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)
$$

(a) Explain, from the standpoint of multivariable calculus, why this is the 'right' equation for the tangent plane, whether of not f is homogeneous.
(b) When f is homogeneous, prove that

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}, z_{0}\right) x_{0}+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}, z_{0}\right) y_{0}+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}, z_{0}\right) z_{0}=0
$$

(Hint: first investigate the case when f is given by a single monomial.)
(c) Conclude that the formula given in 1(a) is "correct".
(3) For $a, b \in \mathbb{C}$, consider the elliptic curves

$$
E_{1}: y^{2}=x^{3}+a x^{2}+b x, \quad E_{2}: y^{2}=x^{3}-2 a x^{2}+\left(a^{2}-4 b\right) x
$$

and the rational maps

$$
\begin{aligned}
& \phi: E_{1} \mapsto E_{2}: \quad(x, y) \mapsto\left(\frac{y^{2}}{x^{2}}, \frac{y\left(b-x^{2}\right)}{x^{2}}\right), \\
& \widehat{\phi}: E_{2} \mapsto E_{2}: \quad(x, y) \mapsto\left(\frac{y^{2}}{x^{2}}, \frac{y\left(b-x^{2}\right)}{x^{2}}\right) .
\end{aligned}
$$

The maps ϕ and $\widehat{\phi}$ are examples of dual isogenies.
Prove the following facts:
(a) These rational maps extend to morphisms of curves in \mathbb{P}^{2} (given locally by polynomials), and each maps \mathcal{O} to \mathcal{O}.
(b) ϕ a group homomorphism. (So is $\widehat{\phi}$.) If you give a computational proof, then feel free to prove only the special case $\phi(P+Q)=\phi(P)+\phi(Q)$ where $P \neq Q$. If you follow Silverman's proof, give more detail than is described there.
(c) The map $\widehat{\phi} \circ \phi$ is the map $P \mapsto 2 P$ on E_{1}. (It is also true that the map $\phi \circ \widehat{\phi}$ is the doubling map on E_{2}.
(d) Each map has kernel consisting of exactly two points. (Compute them.)

