Exercise Set 4 - Arithmetic Geometry, Frank Thorne (thorne@math.sc.edu)

Due Friday, March 6, 2016

(1) Consider the variety V described by the vanishing of $y^{3}=(x-1)(x-2)(x-3)(x-4)(x-5)$ in $\mathbb{A}^{2}\left(\mathbb{F}_{p}\right)$.
(a) Compute $\# V\left(\mathbb{F}_{p}\right)$ for all primes $p<10$.
(b) Guess a pattern or an approximate pattern. What do you think that $\lim _{p \rightarrow \infty} \frac{\# V\left(\mathbb{F}_{p}\right)}{p}$ is?
(2) Consider the variety V described by the vanishing of $X^{3}+Y^{3}+Z^{3}$ in $\mathbb{P}^{2}\left(\mathbb{F}_{p}\right)$. Then this is an elliptic curve (when it is smooth, and provided that a group identity is chosen), although not in Weierstrass form.
Gauss proved an amazing formula for $\# V\left(\mathbb{F}_{p}\right)$. If $p \not \equiv 1(\bmod 3)$, then $\# V\left(\mathbb{F}_{p}\right)=p+1$. If $p \equiv 1(\bmod 3)$, then there are integers A and B with

$$
4 p=A^{2}+27 B^{2}
$$

which are unique up to changing their signs. ${ }^{1}$ Choosing the sign of A such that $A \equiv 1(\bmod 3)$, we have

$$
\# V\left(\mathbb{F}_{p}\right)=p+1+A
$$

(a) Prove the $p \equiv 1 \quad(\bmod 3)$ case. (This is easy: the condition on p guarantees that the map $t \mapsto t^{3}$ is a bijection on \mathbb{F}_{p}.)
(b) Verify Gauss's result in the case that $p=13$.
(c) What upper bound on $\left|\# V\left(\mathbb{F}_{p}\right)-(p+1)\right|$, as a function of p, is immediate from Gauss's theorem?

[^0]
[^0]: ${ }^{1}$ No, this isn't obvious.

