Problem Set 7 - Arithmetic Geometry, Frank Thorne (thorne@math.sc.edu)

Due Tuesday, May 5, 2020

(1) Suppose that a is an integer not divisible by p. Then prove that $\frac{1}{a} \in \mathbb{Z}_{p}$. Writing

$$
\frac{1}{a}=b_{0}+b_{1} p+b_{2} p^{2}+b_{3} p^{3}+\cdots
$$

with each b_{i} satisfying $0 \leq b_{i} \leq p-1$, prove that the sequence of b_{i} is periodic, and determine its period.
(2) For which integers n does the equation $x^{2}-n=0$ have a solution $x \in \mathbb{Z}_{2}$? (Prove your claims.)
(3) In computing the rank of the elliptic curve $y^{2}=x^{3}+17 x$, one is led by the method in SilvermanTate to determine whether or not the equation

$$
N^{2}=17 M^{4}-4 e^{4}
$$

has a nontrivial integer solution.
As it turns out, it doesn't. However, it has solutions in \mathbb{Z}_{p} for every prime p, making it a counterexample to the Hasse Principle. Prove that that there are solutions in \mathbb{Z}_{p}.

HInts. Don't go looking for 'unique' or 'special' solutions; there will be lots, and just cook them up using whatever ad hoc method you can come up with. You will probably want to make aggressive use of Hensel's Lemma; see e.g. Keith Conrad's notes here:
https://kconrad.math.uconn.edu/blurbs/gradnumthy/hensel.pdf

