## Exercise Set 1 - Arithmetic Geometry, Frank Thorne (thorne@math.sc.edu)

Due Friday, January 22, 2016
(1) Let $V$ denote the circle $x^{2}+y^{2}=1, P=\left(\frac{3}{5}, \frac{4}{5}\right) \in V(\mathbb{Q})$, and $L$ the line $x=0$. Let $\phi: V \rightarrow L$ denote the map which associates to any $Q \in P$ the intersection of the lines $L$ and $P Q$.
(a) Prove that, possibly apart from finitely many points, $\phi$ defines a bijection between $V(K)$ and $L(K)$ for any subfield of $\mathbb{R}$. What points of $L$ correspond to the Pythagorean triples $5^{2}+12^{2}=13^{2}$ and $8^{2}+15^{2}=17^{2} ?$
(b) Prove that both $\phi$ and its inverse are both rational functions.
(c) If your earlier bijection excluded the point $P$ itself, define 'the line between $P$ and $P$ ' to be the tangent line to $V$ at $P$ and prove that this extends the bijection to $P$ and one point on $L$ which you previously omitted.
(2) Let $V$ now denote the ellipse $a x^{2}+b y^{2}=1$, and assume that $V$ has a rational point $\left(x_{0}, y_{0}\right)$ with $x_{0} \neq 0$. (This will not be true for all choices of $a$ and $b$.) Repeat the previous exercise.
If you wish, you may skip writing up the first problem since this one subsumes it. But I don't recommend this. If you find these problems easy, I encourage you to attempt the 'Problems' instead.
(3) Let $p$ be a prime. Prove the following elementary properties of $p$-adic valuations which were stated in class. (Here $x$ and $y$ denote arbitrary rational numbers.)
(a) $v_{p}(x y)=v_{p}(x) v_{p}(y)$,
(b) $v_{p}(x+y) \geq \min \left\{v_{p}(x), v_{p}(y)\right\}$,
(c) $v_{p}(x+y)=\min \left\{v_{p}(x), v_{p}(y)\right\}$ if $v_{p}(x) \neq v_{p}(y)$.
(4) Prove, using a $p$-adic valuation argument, that the conic $x^{2}+y^{2}=p$ has no rational solutions for any $p \equiv 3 \quad(\bmod 4)$.

