Exercise Set 4 - Arithmetic Geometry, Frank Thorne (thorne@math.sc.edu)
 Due Friday, February 19, 2016

This homework presumes knowledge of basic complex analysis: meromorphic functions and Laurent series expansions in a neighborhood of any point; contour integrals; residues; Cauchy's residue theorem. If you do not know these topics, please put this homework off until you do.
(1) For a given lattice, prove the Laurent series expansion (around $z=0$)

$$
\wp(z)=z^{-2}+3 G_{4} z^{2}+5 G_{6} z^{4}+7 G_{8} z^{6}+O\left(z^{8}\right)
$$

Now, compute the Laurent series expansions for $\wp^{\prime}(z)$ (up to $O\left(z^{8}\right)$) and $\wp(z)^{3}$ and $\wp^{\prime}(z)^{2}$ (up to $O\left(z^{2}\right)$). Conclude that

$$
\wp^{\prime}(z)^{2}-\left(4 \wp(z)^{3}-g_{2} \wp(z)-g_{3}\right)=O\left(z^{2}\right)
$$

in a neighborhood of zero, and then explain why this forces this function to be identically zero.
(2) (a) Suppose that $f(z)=\left(z-z_{0}\right)^{k} g(z)$, where $g(z)$ is holomorphic in a neighborhood of $z=z_{0}$. Compute the residues of $\frac{f^{\prime}(z)}{f(z)}$ and $m \frac{f^{\prime}(z)}{f(z)}$ at $z=z_{0}$.
(b) Let $f(z)$ be an elliptic function with respect to the lattice Λ, and let D be a fundamental parallelogram chosen so that its boundary ∂D does not pass through any zeroes or poles of D. (Why can such a choice be made?)
Prove that

$$
\sum_{z \in D} \operatorname{ord}_{z}(f)=0
$$

where $\operatorname{ord}_{z}(f)$ indicates the order of zero (if positive) or pole, by evaluating the integral

$$
\frac{1}{2 \pi i} \int_{\partial D} \frac{f^{\prime}(z)}{f(z)} d z
$$

in two different ways: directly (by cancelling opposite sides), and by using Cauchy's residue theorem.
(c) With the same setup as in the previous problem, let a_{1}, \ldots, a_{n} be the zeroes of f (counted, as always, with multiplicity), and let b_{1}, \cdots, b_{n} be the poles. Prove that

$$
\sum a_{i}-\sum b_{j} \equiv 0 \quad(\bmod \Lambda),
$$

by evaluating the integral

$$
\frac{1}{2 \pi i} \int_{\partial D} z \frac{f^{\prime}(z)}{f(z)} d z
$$

in two different ways: directly, and by using Cauchy's residue theorem.
Hint: For any meromorphic function $g(z)$ with $g(a)=g(b)$, the integral $\frac{1}{2 \pi i} \int_{a}^{b} \frac{g^{\prime}(z)}{g(z)} d z$ is the winding number around 0 of the path

$$
[0,1] \rightarrow \mathbb{C}, \quad t \rightarrow g((1-t) a+t b)
$$

and in particular is an integer.

