Exercise Set 5 - Arithmetic Geometry, Frank Thorne (thorne@math.sc.edu)

Due Friday, March 5, 2016
(1) Consider the elliptic curve $E: Y^{2}=X^{3}-3$.

Prove that E defines an elliptic curve over \mathbb{F}_{p} for all primes $p \leq 20$ with one exception. For every prime p for which E defines an elliptic curve over \mathbb{F}_{p}, compute $\# E\left(\mathbb{F}_{p}\right)$, whether by hand or by computer. Check that your results are consistent with Hasse's theorem.
(2) (a) Prove that there are $\frac{q^{n+1}-1}{q-1}=1+q+q^{2}+\cdots+q^{n}$ points in $\mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$.
(b) Prove that the Hasse-Weil zeta function of \mathbb{P}^{n} over \mathbb{F}_{p} is

$$
Z\left(\mathbb{P}^{n} / \mathbb{F}_{p} ; T\right)=\frac{1}{(1-T)(1-p T)\left(1-p^{2} T\right) \cdots\left(1-p^{n} T\right)}
$$

(3) Again consider the elliptic curve $E: Y^{2}=X^{3}-3$, this time only in characteristic 2 .
(a) Explicitly construct the finite fields $\mathbb{F}_{2}, \mathbb{F}_{4}$, and \mathbb{F}_{8}, and count the number of points (including the point at infinity!) that E has over each of these fields.
(b) Recall that, by the Weil conjectures, we have

$$
Z\left(E / \mathbb{F}_{2} ; T\right)=\frac{1+a T+2 T^{2}}{(1-T)(1-2 T)}
$$

Prove that $a=\# E\left(\mathbb{F}_{2}\right)-3$, and thereby write down the exact form of the zeta function.
(c) Prove an explicit formula for $\# E\left(F_{2^{r}}\right)$, valid for all positive integers r, and verify that it matches your counts for \mathbb{F}_{4} and \mathbb{F}_{8}.

