Problem Set 1 - Arithmetic Geometry, Frank Thorne (thorne@math.sc.edu)

Due Friday, January 22, 2016
(1) Let V be a projective plane smooth conic defined over a field K of characteristic not equal to 2. Assume that V has a K-rational point P. Prove that V is isomorphic to \mathbb{P}^{1} over K. Recall that this means there are inverse morphisms $\phi: V \rightarrow \mathbb{P}^{1}$ and $\phi^{-1}: \mathbb{P}^{1} \rightarrow V$, the defining polynomials of which are defined over K. You might find it useful to review the definition of a morphism of projective varietiies - you can see Silverman, Ch. I. 3 among many other sources.
It is not difficult to reduce to the case where $V=V\left(a x^{2}+b y^{2}-c z^{2}\right)$. You might or might not find it helpful to make this reduction.

