Problem Set 3 - Arithmetic Geometry, Frank Thorne (thorne@math.sc.edu)
 Due Friday, February 12, 2016

Choose one. (Not that I discourage you from solving both.)
(1) (Do not use the Riemann-Roch theorem for any of this. Please argue directly.)
(a) Prove that the degree 0 part of the Picard group of \mathbb{P}^{1} is trivial.
(b) Let L be a line in \mathbb{P}^{2}. Prove that the degree 0 part of the Picard group of L is trivial.
(c) Let $V=V\left(X^{2}+Y^{2}-Z^{2}\right)$ in \mathbb{P}^{2}. Prove that the degree 0 part of the Picard group of V is trivial.
(d) Let E be an elliptic curve. Prove that the degree 0 part of the Picard group of V is not trivial.

You might follow (but in your own words please) the elegant proof here: http://www. mathematik.uni-kl.de/~gathmann/class/alggeom-2014/chapter-14.pdf
(2) (Suitable if you enjoy computer programming.)

Using Python, Java, Sage, PARI/GP, etc. (or any other language of your choice), write a computer program which accepts the following input:

- The equation of an elliptic curve E (which you may assume is of the form $y^{2}=x^{3}+A x+B$).
- Two points P_{1} and P_{2} on E, each given as ordered pairs $\left(x_{i}, y_{i}\right)$. You may assume that neither is the point at infinity, but do not assume they are unequal.

Your program should return the coordinates of $P_{1}+P_{2}$.
Please use rational number rather than floating point arithmetic if this is natively supported by your programming language of choice. But please do the arithmetic from scratch! (i.e., don't use PARI/GP and Sage's built in functionality to do exactly this. Of course, this is a great way to check your work.)

