Problem Set 6 - Arithmetic Geometry, Frank Thorne (thorne@math.sc.edu)
Due Monday, March 28, 2016
(Choose one.)
(1) A special case of Schanuel's Theorem says that

$$
C\left(\mathbb{P}^{N}(\mathbb{Q}), B\right):=\left\{P \in \mathbb{P}^{N}(\mathbb{Q}): H(P) \leq B\right\} \sim \frac{2^{N}}{\zeta(N+1)} B^{N+1}
$$

Prove this. A step-by-step proof is outlined in the exercise set; if you want to build your analytic number theory chops, don't read it.
(2) Let $\phi: \mathbb{P}^{N} \rightarrow \mathbb{P}^{M}$ be a morphism of degree d, i.e., one defined by

$$
\phi(P)=\left[f_{0}(P): f_{1}(P): \cdots: f_{M}(P)\right]
$$

where all the f_{i} are homogeneous polynomials of degree d.
(a) Prove that for all $P \in \mathbb{P}^{N}$ we have the upper bound

$$
h(\phi(P)) \ll d h(P)
$$

The implied constant may depend on everything other than P. (You may see pp. 208-209 of Silverman but I encourage you to come up with your own proof!)
(b) Note that the f_{i} cannot have any common zeroes (otherwise ϕ is only a rational map). As such the set

$$
\left\{Q \in \mathbb{A}^{N+1}(\mathbb{Q}): f_{0}(Q)=\cdots=f_{M}(Q)=0\right\}
$$

consists of only the single point $(0, \ldots, 0)$. Use Hilbert's Nullstellensatz to argue that the ideal generated by f_{0}, \cdots, f_{M} contains some power of each of the X_{i}.
(c) Prove the lower bound

$$
h(\phi(P)) \gg d h(P) .
$$

This is more difficult, so you might choose to follow Silverman closely. (This is all in VIII.5, in the first edition more specifically pp. 209-210.) If you do, assume that you are working over \mathbb{Q} and simplify Silverman's proof by omitting any details irrelevant to this special case.)

