Algebraic number theory (Spring 2013), Homework 3

Frank Thorne, thornef@webmail.sc.edu

Due Monday, February 10

1. (5 points) Represent $23, \frac{1}{4},-7$, and $-\frac{1}{14}$ as 7 -adic numbers. Which of them are 7 -adic integers?
2. (5 points) Write out a formal proof that there exists an injection $\mathbb{Z}_{(p)} \rightarrow \mathbb{Z}_{p}$.
3. (*7 points) Look up and write out the definition of an inverse limit in general, in terms of a universal property. (For example, see the Wikipedia page.) Prove that \mathbb{Z}_{p} is the inverse limit of the rings $\mathbb{Z} /\left(p^{n}\right)$, under the projection morphisms, according to this definition.
4. (5 points) Represent $\sqrt{6}$ as a 5 -adic integer (find the first few 5 -adic digits, and prove that you can keep going without quoting Hensel's lemma), and prove that you cannot represent $\sqrt{6}$ as a 7 -adic integer.
5. (10 points) Starting from the completion definition of \mathbb{Q}_{p} (Cauchy sequences mod Cauchy sequences converging to zero), prove the following properties, less sketchily than was done in lecture:

- \mathbb{Q}_{p} is a field.
- \mathbb{Z}_{p} is a ring, and (p) is the unique maximal ideal.
- \mathbb{Q}_{p} and \mathbb{Z}_{p} possess an absolute value which agrees with the p-adic absolute value on \mathbb{Q} and \mathbb{Z}, and are complete with respect to this absolute value.

6. (5 points) Prove that addition or multiplication by any fixed element of \mathbb{Q}_{p} is (topologically) a homeomorphism from \mathbb{Q}_{p} to itself.
If you want to study valuations in general, the adeles, Tate's thesis, etc., please be sure to do this exercise. (Or just convince yourself it's "obvious".)
7. (7 points) \mathbb{Z}_{p} is compact.
