
APPENDIX TO: DIRICHLET SERIES ASSOCIATED TO QUARTIC
FIELDS WITH GIVEN RESOLVENT

HENRI COHEN AND FRANK THORNE

Abstract. This is an appendix to our paper [1], where we give an explicit formula for the
Dirichlet series

∑
K |Disc(K)|−s, where the sum is over isomorphism classes of all quartic

fields whose cubic resolvent field is isomorphic to k.
In the present note, we give a complete proof of a theorem enumerating splitting types

of certain number fields, which was stated in [1] without a complete proof. The details are
somewhat long and not terribly difficult, and so we decided to leave them out of [1]. The
results proved here were largely (and independently) also obtained by Martinet [2], again in
unpublished work.

This is an appendix to [1], not intended for publication. Accordingly we refer to [1] for the
motivation for proving Theorem 0.4. Here we simply commence with the details, although
this note should be fairly readable on its own.

We also note that many of the results in this paper were obtained independently and
previously in unpublished work of Martinet [2].

In [1] and the present note, we are interested in studying A4- and S4-quartic fields; i.e.,

quartic fields whose Galois closure is isomorphic to A4 or S4 respectively. In the A4 case, K̃

contains a unique cyclic cubic subfield k, and in the S4 case, K̃ contains three isomorphic
noncyclic cubic subfields k. In either case k is called the cubic resolvent of K, it is unique
up to isomorphism, and it satisfies Disc(K) = Disc(k)f(K)2 for some integer f(K).

Definition 0.1. Given any cubic field k (cyclic or not), let L(k) be the set of isomorphism
classes of quartic fields whose resolvent cubic is isomorphic to k, with the additional restric-
tion that the quartic is totally real when k is such. Furthermore, for any n define L(k, n2)
to be the subset of L(k) of those fields with discriminant equal to n2Disc(k).

Finally, we define Ltr(k, 64) to be the subset of those L ∈ L(k, 64) such that 2 is totally
ramified in L, and we set

L2(k) = L(k, 1) ∪ L(k, 4) ∪ L(k, 16) ∪ Ltr(k, 64) .

Note that if k is totally real the elements of F(k) are totally real or totally complex, and
L(k) is the subset of totally real ones, while if k is complex then the elements of L(k) = F(k)
have mixed signature r1 = 2, r2 = 1.

We introduce some standard notation for splitting types of primes in a number field. If L
is, say, a quartic field, and p is a prime for which (p) = p2

1p2 in L, where pi has residue class
degree i for i = 1, 2, we say that p has splitting type (212) in L (or simply that p is (212)
in L). Other splitting types such as (22), (1111), (14), etc. are defined similarly. Moreover,
when 2 has type (121) in a cubic field k, we say that 2 has type (121)0 or (121)4 depending
on whether Disc(k) ≡ 0 (mod 8) or Disc(k) ≡ 4 (mod 8).
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Definition 0.2.

(1) We will say that an element α ∈ k∗ (resp., an ideal a of k) has square norm if N (α)
(resp., N (a)) is a square in Q∗.1

(2) We will say that a quadratic extensionK6/k has trivial norm if there exists α ∈ k∗\k∗2
of square norm such that K6 = k(

√
α). (Observe that this implies α 6∈ Q.)

Note that if the principal ideal (α) has square norm then α has either square norm or
minus square norm, but since we will only be considering such elements in cubic fields, this
means that ±α has square norm for a suitable sign.

Theorem 0.3. There is a correspondence between isomorphism classes of A4 or S4-quartic
fields K, and pairs (k,K6), where k is the cubic resolvent field of K, and K6/k is a quadratic
extension of trivial norm. Under this correspondence we have Disc(K) = Disc(k)N (d(K6/k))
and more precisely the Artin relation

(0.1) ζK(s) =
ζ(s)ζK6(s)

ζk(s)
.

If K is an S4-field then this correspondence is a bijection, and K6 is equal to the unique

extension of k with Gal(K̃/K6) ' C4. If K is an A4-field, then k has three quadratic
extensions, given by adjoining a root of α or either of its nontrivial conjugates, and this
correspondence is 1-to-3, with any of these fields yielding the same K (up to isomorphism).

Proof. See [1], except for the Artin relation (which will likely be left out of the final version
of [1]), which follows from the character theory of A4 and S4. �

In [1] is is necessary to understand the possible ways in which primes can split in various
field extensions. The following is the main result of the paper, enumerating the possible
ways in which primes can split in the fields k, K6, and L.

Theorem 0.4. Let (k,K6, L) be as described in Theorem 0.3 (with K replaced by L), and let
p be a prime. The possible splittings of p in the three fields is given in the tables below, where
OK indicates that the splitting can occur for at least one p (or for p = 2 in the corresponding
column), and any other mark is an indication of the reason for impossibility, explained below.
In one case for p = 2 the distinction between (121)0 and (121)4 is made, but in all other cases
where OK is indicated, both can occur.

1Note that in [?] there is a misprint in the definition of square norm, where “NK6/k(α) square in k” should
be replaced by what we have written, i.e., simply “α of square norm”, in other words N (α) square in Q∗.
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k-split K6-split L-split Possible for p 6= 2 ? Possible for p = 2 ?

(3) (6) — ZETA ZETA
(3) (33) (31) OK OK
(3) (32) (14) SQN OK
(21) (42) (4) OK OK
(21) (411) — ZETA ZETA
(21) (412) — ZETA ZETA
(21) (222) (22) STICK STICK
(21) (2211) (211) OK OK
(21) (2212) (212) SQN GRP(1)
(21) (222) (22) OK OK
(21) (2211) (131) RAM RAM
(21) (2211) (1212) OK OK
(21) (2212) (14) SQN OK

k-split K6-split L-split Possible for p 6= 2 ? Possible for p = 2 ?
(111) (222) — ZETA ZETA
(111) (2211) (22) OK OK
(111) (2212) — ZETA ZETA
(111) (21111) (211) STICK STICK
(111) (21112) (212) SQN GRP(2)
(111) (21212) (22) OK OK
(111) (111111) (1111) OK OK
(111) (121111) (1211) SQN GRP(3)
(111) (121211) (1212) OK OK
(111) (121211) (131) RAM RAM
(111) (121212) (14) SQN OK
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k-split K6-split L-split Possible for p 6= 2 ? Possible for p = 2 ?
(121) (222) — ZETA ZETA
(121) (2211) (212) OK OK
(121) (2212) (22) SQN GRP(4)
(121) (12122) (212) GRP(5) GRP(5)
(121) (121211) (1211) OK OK
(121) (121212) (1212) SQN GRP(6)
(121)0 (142) (22) SQN PARITY
(121)4 (142) (22) SQN OK
(121) (1411) (1212) SQN OK
(121) (1412) (14) OK OK
(13) (23) (22) GRP(7) GRP(7)
(13) (1313) (1212) GRP(8) GRP(8)
(13) (1313) (131) OK OK
(13) (16) (14) SQN OK

Before starting the proof, we give the Hasse diagram of S4.
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In this diagram D is as above the discriminant of k up to a square, and the number to

the left of each field is the number of conjugates inside L̃. If K6 = k(
√
α), the field K ′6 is the

field k(
√
αD). Finally note that, in addition to the indicated Galois degree 2 extensions and

C3 extensions, we have Gal(L̃/L) ' S3, Gal(L̃/k) ' D4, Gal(L̃/K6) ' V4, Gal(L̃/k̃) ' V4,

Gal(L̃/K ′6) ' C4, and of course Gal(K12/k) ' V4.

Proof. Since K6/k is a quadratic extension, the possible splitting types of a prime ideal of k
in K6 are (2), (11), and (12). It is then easily checked that when a prime splits in k as (3),
(21), (111), (121), or (13), there are 3, 9, 10, 9, or 3 splitting types in K6 respectively, given
in the above tables. We first give some general tools for ruling out certain splittings.

• Using the Euler factors coming from the zeta function relation (0.1). For example,
if a prime splits as (21) in k then it cannot split as (411) or as (412) in K6 since in
that case the inverse of the Euler factors for ζL(s) would be (1 + p−2s)(1 − p−s)2 or
(1 + p−2s)(1− p−s), which are not possible for Dedekind zeta function Euler factors.
We write ZETA for this. In this case, and only in this case, we evidently do not
indicate any splitting in L.

Note also that the Euler factor for ζL(s) determines the splitting type, with the
unique exception of (1 − p−s)−2 which can correspond to the splittings (1212) and
(131).
• Using Stickelberger’s theorem: recall that if F is a number field of degree n and p is

a prime unramified in F which splits into g prime ideals, then
(Disc(F )

p

)
= (−1)n−g.

Thus, since Disc(L) = Disc(k)f(L)2, it follows that when p is unramified both in
k and L the number of primes above p in k and L must have opposite parity. For
example, if a prime p splits as (21) in k and (222) in K6, the zeta function relation
shows that the inverse Euler factor is equal to (1− p−2s)2, so the splitting in L must
be (22), contradicting Stickelberger. We write STICK for this.
• Using the square norm condition: recall that d(K6/k) = 4a/c2 with a integral, square-

free, and of square norm. Thus if p is a prime ideal of k not dividing 2 which is ramified
in K6/k, we must have vp(a) = 1, and since a has square norm it follows that

0 ≡ vp(N (d(K6/k))) = vp(N (a)) =
∑
p|pZk

p|a

f(p/p)vp(a) =
∑
p|pZk

p|d(K6/k)

f(p/p) (mod 2) .

For example, if a prime p 6= 2 splits as (21) in k and (2212) in K6, writing pZk = p1p2

with pi of degree i, the above relation gives 1 = f(p1/p) ≡ 0 (mod 2), a contradiction.
We write SQN for this. Note that it is not possible to apply this to p = 2.
• Using divisibility by 3 of ramification degrees: assume that a prime p splits as (131)

in L/Q. With evident notation this implies that 3 | e(peL/p) = e(peL/pk)e(pk/p), and

since L̃/k is Galois of order 4 or 8 and in particular coprime to 3, we have 3 - e(peL/pk)
hence 3 | e(pk/p), and since k is a cubic field this means that p splits as (13) in k.
We write RAM for this.
• In the following special case we reason as follows: assume that p = 2 splits as (121)

in k, (142) in K6, and (22) in L. We have v2(Disc(L)) = 4 or 6 (see Lemma ??), and
since Disc(L) = Disc(k)f(L)2 we thus have v2(Disc(k)) ≡ v2(Disc(L)) ≡ 0 (mod 2),
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hence v2(Disc(k)) = 2 since 2 is ramified in k, so Disc(k) ≡ 4 (mod 8). We write
PARITY for this.

For the remaining impossibility proofs, we use a case-by-case study, in general using the
decomposition and/or inertia groups. We write GRP(i) for this, with i ranging from 1 to 8.
First recall the following well-known facts.

• Let p be a prime, P a prime ideal of L̃ above p, and write [L̃ : Q] = efg with the
usual meaning. If D = D(P/p) and I = I(P/p) denote the decomposition and inertia

group, then |D| = ef , |I| = e, there is an unramified prime pD of degree 1 in L̃D/Q,
which we write as e(pD/p) = f(pD/p) = 1, g(pD/p) = g, the prime ideal below P in

L̃D stays inert in the extension L̃I/L̃D, which we write as e(pI/pD) = g(pI/pD) = 1,

f(pI/pD) = f , and finally the prime ideal below P in L̃I totally ramifies in L̃/L̃I ,

which we write as f(P/pI) = g(P/pI) = 1, e(P/pI) = e. The fields L̃D and L̃I will be

called the decomposition field and inertia field of P above p. We have [L̃D : Q] = g,

[L̃I : L̃D] = f , and [L̃ : L̃I ] = e. Finally, note that all decomposition groups and all

inertia groups are conjugate, so all decomposition fields and all inertia fields of L̃ for
p are also conjugate.

Lemma 0.5. (1) Let K ⊂ L̃ and assume that g | [K : Q] and that there exists a
prime ideal p of K above p such that e(p/p) = f(p/p) = 1. Then [K : Q] = g
and K is a decomposition field for p.

(2) Let K ⊂ L̃ and assume that fg | [K : Q] and that there exists a prime ideal p of
K above p such that e(p/p) = 1. Then [K : Q] = fg and K is an inertia field
for p.

Proof. Immediate from the definitions and the transitivity of e and f , and left to the
reader. �

• Using the description on the subgroups of A4 and S4 it is immediate to see that the

only quartic subfields of L̃ are the conjugates of L, in the S4 case the only quadratic
subfield is Q(

√
Disc(k)), and in the A4 case there is no quadratic subfield. The other

fields are given for S4 in the Hasse diagram above.
• If p is not totally ramified, recall also that the splitting of p in k determines that of p

in k̃: if k is noncyclic and p splits as (3), (21), (111), and (121) in k then it splits as

(33), (222), (111111), and (121212) in k̃ respectively. This is not true if p is totally
ramified, i.e., splits as (13) in k.
• No prime is totally ramified in a V4-extension.
• If k is cyclic then p must be (111), (3), or (13) in k.

GRP(1) Assume that p is (21) in k (in the S4 case only), (2212) in K6, and (212) in L. We

have 2 | e and 2 | f . If P is an ideal of L̃ above the ideal p of L with f(p/p) = 2, we

have e(P/p) | [L̃ : L] = 6, and since e(p/p) = 1 it follows that e = e(P/p) | 6, so that
e = 2. Similarly, by considering the ideal p of L with e(p/p) = 2 we see that f = 2.
Thus the decomposition fields are quartic fields, and since the only quartic subfields
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of L̃ are the conjugates of L, it follows that L is a decomposition field, a contradiction
since none of the prime ideals p of L above p satisfy e(p/p) = f(p/p) = 1.

GRP(2) Assume that p is (111) in k, (21112) in K6, and (212) in L. In the S4 case p is

(111111) in k̃, we have 2 | e, 2 | f , and 6 | g, so e = f = 2 and g = 6. By Lemma

0.5 it follows that k̃ and K6 are decomposition fields, a contradiction since they are
not conjugate. In the A4 case we have 2 | e, 2 | f , and 3 | g, so e = f = 2 and g = 3.
However, since there exists a prime ideal p of K6 such that e(p/p) = f(p/p) = 1 it
follows from Lemma 0.5 that [K6 : Q] = 3, a contradiction.

GRP(3) Assume that p is (111) in k, (121111) in K6, and (1211) in L. We thus have 2 | e and
6 | g. If we had ef = 4 the decomposition fields would be sextic. However, in view of

the splittings of p in k̃ and in K6, both of these fields would be decomposition fields,
which is absurd since they are not conjugate, the decomposition of p being different.
Thus ef = 2, i.e., f = 1 and e = 2. But then the decomposition fields would be of
degree 12. This is clearly impossible in the A4 case since p is ramified. In the S4 case,

since p is (111111) in k̃, there must be a decomposition field containing k̃, which by
the Hasse diagram must be conjugate to K12; however, writing pZL = p2

1p2p3 in L,
since the ramification indices cannot exceed 2 there must be a prime p′2 of Lk above
p2 with e(p′2/p2) = f(p′2/p2) = 1, so that by Lemma 0.5 Lk is a decomposition field
for p. This is again absurd since K12 and Lk are not conjugate.

GRP(4) Assume that p is (121) in k, (2212) in K6, and (22) in L. We have 2 | e, 2 | f , and

since p is (121212) in k̃ we have 3 | g. Thus |I| = e = 2 or 4. Assume first that |I| = 2,
so that the inertia fields have degree 12. Note that all ideals above p are ramified in
K6, hence also in K12, and the unique ideal of above p in L is ramified, so also in Lk.
Since all degree 12 subfields are conjugate to K12 or to Lk we obtain a contradiction.
Assume now that |I| = e = 4, so that the inertia fields have degree 6. Because of the

ramification in K6 and k̃, the only possibility is that the inertia fields are conjugate

to K ′6, so I = Gal(L̃/K ′6) with a suitable choice of conjugate. However this Galois

group is cyclic, while the Galois group of L̃/K6 is isomorphic to V4, a contradiction.
GRP(5) Assume that p is (121) in k, (12122) in K6, and (212) in L. Then again 2 | e, 2 | f , and

since p is 121212 in k̃ we have 3 | g. Thus, if I denotes an inertia group, we have |I| = 2
or 4. Assume first that |I| = e = 2. We then have |D| = ef = 4 or 8. If |D| = 8 then

the decomposition fields are cubic hence conjugate to k, so D ' Gal(L̃/k) ' D4,
while I is generated by a transposition, absurd since I is a normal subgroup of D.
Thus |D| = 4, so the decomposition fields are sextic. However it cannot be conjugate
to K6 since no prime ideal p above p of this field satisfies e(p/p) = f(p/p) = 1, and

for the same reason it cannot be k̃. Finally it cannot be K ′6: if p1 is the unique

prime ideal of k above p which is unramified, it is (12) in k̃/k, (2) in K6/k, hence
necessarily (12) in K ′6, the third quadratic subextension of the V4-extension K12/k.
Thus we cannot have |I| = 2.

Assume now that |I| = e = 4, so that f = 2, |D| = ef = 8, and g = 3. As

[L̃ : K6] = |I|, the prime ideal of degree 2 above p in K6 is unramified over Q and
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hence totally ramified in the extension L̃/K6. This is absurd since this extension has
Galois group V4, and no prime ideal can be totally ramified in such an extension.

GRP(6) Assume that p = 2 is (121) in k, (121212) in K6, and (1212) in L. We now have 2 | e
and 3 | g. Let p denote the prime ideal of k which is unramified above p. Since
Gal(K12/k) ' V4, the ideal p cannot be totally ramified in K12/k, so if P is an ideal

of L̃ above p we have e = e(P/p) = e(P/p)e(p/p) | 4. It follows that e = 2 or 4, and
since the only difference with the GRP(4) case is that the ramified prime above p in
k is split in K6/k instead of being inert, the proof of impossibility of e = 2 and e = 4
is the same.

GRP(7) Assume that p is (13) in k, (23) in K6, and (22) in L. We thus have 3 | e (because
of k), 2 | e (because of L), and 2 | f , so 6 | e and 2 | f . Thus in particular

2 | fg = [L̃ : Q]/e | 4. It follows that the inertia fields are either quadratic or
quartic. If q is a prime ideal above p of such a field we have e(q/p) = 1. Since quartic
subfields are conjugate to L and p splits as (22) in L the inertia field cannot be

quartic. Thus it is quadratic, so we are in the S4 case and the field is Q(
√

Disc(k)),
hence e = 12, f = 2, and g = 1. The decomposition field is thus Q itself, so p is

inert in Q(
√

Disc(k)). Thus p splits as (23) in k̃, and in particular the extension k̃/k
is unramified at p. Since K6/k is also unramified at p, it follows that the degree 12
compositum K12/k is unramified at p, so that e | 6, a contradiction.

GRP(8) Assume that p is (13) in k, (1313) in K6, and (1212) in L. Then as above 6 | e and
2 | g, so the decomposition fields and inertia fields are either quadratic or quartic,
they cannot be quartic since all primes of L above p are ramified, so we are in the
S4 case, the decomposition and inertia fields are both equal to Q(

√
Disc(k)), hence

e = 12, g = 2, and f = 1. Since p is unramified in this decomposition field and

f = 1, it is split, hence the prime p above p in k splits in k̃. Since it also splits in

K6 it follows that it is totally split in the degree 12 compositum K12/k of k̃ and K6,
hence that 4 | g, a contradiction.

To finish the proof of Theorem 0.4, we simply need to find an occurrence of the given
splittings in all entries of the table marked OK. This is done by an easy computer search.
Note that almost all of the needed examples for p = 2 are given in the table of Proposition
?? below: the only missing ones are those for which K6 cannot be generated by a totally
positive virtual unit coprime to 2, namely for (k,K6, L) split as ((111), (121212), (14)) and
((121)4, (1

412), (14)), for which (random) examples of suitable Pα(x) are x3 + 3x2− 10x− 16
and x3 − 4x2 − 10x− 4 respectively. �

By inspection of the tables, we immediately obtain the following corollaries:

Corollary 0.6.

(1) A prime p is (14) in L if and only if all the prime ideals above p in k are ramified in
the quadratic extension K6/k.

(2) If p 6= 2, then p can be (14) in L only if p is (121) in k.

Corollary 0.7. Let L be an A4 or S4-quartic field, and let k be its cubic resolvent.
Suppose first that p ≥ 3 is a prime number.
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1. If p is (3) in k, then p is (31) in L.
2. If p is (21) in k, then p is (4), (211), (22), or (1212) in L.
3. If p is (111) in k, then p is (1111), (22), (22), or (1212) in L.
4. If p is (121) in k, then p is (212), (1211), or (14) in L.
5. If p is (13) in k, then p is (131) in L.

If p = 2, then in addition to the above decomposition types, in all cases 2 can be (14) in L,
if 2 is (121) in k then 2 can also be (1212) in L, and if 2 is (121)4 in k then 2 can also be
(22) in L.
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