FOUR PERSPECTIVES ON SECONDARY TERMS IN THE
DAVENPORT-HEILBRONN THEOREMS

FRANK THORNE

ABSTRACT. This paper is an expanded version of the author’s lecture at the Integers Confer-
ence 2011. We discuss the secondary terms in the Davenport-Heilbronn theorems on cubic fields
and 3-torsion in class groups of quadratic fields. Such secondary terms had been conjectured
by Datskovsky-Wright and Roberts, and proofs of these or closely related secondary terms were
obtained independently by Bhargava, Shankar, and Tsimerman [7], Hough (23], Zhao [44], and
Taniguchi and the author [36].

In this paper we discuss the history of the problem and highlight the diverse methods used in
[7, 23, 44, 36] to address it.

1. INTRODUCTION

This paper concerns the following two theorems.

Theorem 1.1. Let N5 (X) count the number of cubic fields K with 0 < +Disc(K) < X. We have

1 4¢(1/3
(1.1) NE(X)=C* 12C(3)X +K* 5r(2/C?E)3/<<)5/3)X5/6 + 0(X°/9),

where C~ =3, Ct =1, K~ =+/3, and KT = 1.

Theorem 1.2. For any quadratic field with discriminant D, let Clg(D) denote the 3-torsion sub-
group of the ideal class group Cl(Q(v/D)), we have
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and where the sum ranges over fundamental dzscmmmants D, the product is over all primes, and
the constants are as before.

The main terms are due to Davenport and Heilbronn [15], and the secondary term in Theorem
1.1 was conjectured by Roberts [31] and implicitly by Datskovsky and Wright [14].

The secondary terms were expected to be difficult to prove. However, progress has recently made
in four independent works, using a variety of methods. Both results above have been proved by
Bhargava, Shankar, and Tsimerman [7], using the geometry of numbers, and by Taniguchi and the
present author [36], using Shintani zeta functions. Hough [23] has proved a variation of Theorem
1.2 by studying the distribution of Heegner points in the upper complex plane, and Zhao [44] has
obtained a variation of Theorem 1.1 for function fields, using algebraic geometry.!

The author’s lecture at the 2011 Integers Conference explained (briefly) how each of these four
approaches all shed light on these secondary terms, and this paper is an expanded version of

LA proof of Theorem 1.2 does not appear in [7], but the authors have shown me a proof. The error terms in [23]
and [44] are larger than the secondary terms at present, but both of these approaches naturally explain the secondary
term, and both authors are currently working on refining their methods.
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our lecture. We begin with some background on counting fields and on counting cubic fields in
particular. The reader might skip to Section 4 for our discussion of the secondary terms.

2. COUNTING FIELDS IN GENERAL

How does one count number fields? This question has been addressed in many excellent exposi-
tory accounts, such as that by Cohen, Diaz y Diaz, and Olivier [10], or Chapter 6 of Bhargava’s ICM
proceedings article [5]. Therefore, our overview will be brief. To a large extent we concentrate on
the “trivial” problem of counting quadratic fields, as some observations on this problem anticipate
the methods developed to count cubic fields with good error terms.

The two most important theorems in the subject were proved by Minkowski and Hermite:

Theorem 2.1 (Hermite). There are only finitely many number fields of bounded discriminant.

Theorem 2.2 (Minkowski). The discriminant of a number field K of degree n satisfies

(2.1) Disc(K)| > <’S>2<Dn

If we write n = r + 2s, where r is the number of real embeddings of K, and s is the number of
pairs of complex embeddings, we may replace (7/4)" with (m/4)?*. Moreover, by Stirling’s formula
nl~y/ 27m(%)n and therefore

T n n
(2.2) |Disc(K)| > (e2 2 +o(1)) - <5.803~~-+0(1)> .
The constant ean can be improved; see Odlyzko [28]. Conversely, this bound is sharp apart from
the constant; Golod and Shafarevich [21] proved the existence of an infinite class field tower of
fields K for which [Disc(K)|"/" is constant.?

To prove these theorems?®, use the » embeddings K < R and the s pairs of embeddings K — C
to embed the ring of integers of K as a lattice in n-dimensional space. As proved by Minkowski, any
convex body centered around the origin, whose volume is greater than 2"|Disc(K)|, must contain
a lattice point other than zero. However, this point must have norm at least 1, and geometric
considerations allow one to conclude Minkowski’s lower bound.

Hermite’s theorem can be proved in a similar way. We again use Minkowski’s convex body
theorem to find an element o € O, the sizes of whose complex embeddings are all small, and which
is guaranteed to generate K over Q. The minimal polynomial of « is equal to [[ (X —o(«)), where
o ranges over all real and complex embeddings of K, and the bounds obtained from Minkowski’s
theorem yield bounds on the coefficients of the minimal polynomial of . For a fixed discriminant
bound, there are only finitely many such polynomials, and thus only finitely many possibilities for
K.

These classical theorems suggest that it is natural to count fields by degree. In what follows, let
N, (X) be the number of fields K of degree n with |Disc(K)| < X. (Results are also known when
the sign of the discriminant, or more generally the number of real embeddings, is specified.)

We have the following results (excluding n = 3):

n = 1. There is only Q.

2Martinet [26] gave the example of F' = Q(¢11 + 3, v—46), which he proved to have an infinite 2-class field
tower, for which |Disc(K)|'/™ = 92.2--- for each field K. We refer to Lemmermeyer [24] for a discussion of related
issues, along with a very thorough bibliography.

3See [27], Ch. IIL.2 for complete proofs.
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n = 2. We have the equality of Dirichlet series

(2.3) m%}:ﬂ |Disc(K)| ™% = —1 + (1 — 2754 2. 4—8) CC((;S)),
and it follows that
(2.4) No(X) = %X +O(VX).

The typical proof of (2.4) estimates, for each squarefree odd ¢, the number of integers n divisible
by ¢? satisfying the 2-adic conditions implied by (2.4), and then uses inclusion-exclusion to sieve for
squarefreeness. The details are commonly left as an exercise for beginning analytic number theory
students. However, it was not until the recent work of Belabas, Bhargava, and Pomerance [2] that
the analogous method was developed to yield power-saving error terms for N3(X).

How does one estimate the number of integers n with 0 < n < X and ¢?|n? (For simplicity of
explanation, we ignore the 2-adic conditions.) One way is to interpret it as a lattice-point counting

problem in a one-dimensional vector space, and estimate the number of such n by q% times the

length of the interval (0, X'). This is of course trivial, but its generalization to the cubic case, where

one counts GLg(Z)-orbits on a four-dimensional lattice, satisfying local conditions (mod ¢?) and a

global condition 0 < £Disc(f) < X, is not. (The higher dimensional analogues are still less so!)
These integers may also be counted using analytic number theory. By Perron’s formula, we have

2-+1i00 ds
25) S o= [,
0<n<X 2—1i00 5
a?n

and these sums may be estimated by shifting the contour and using the functional equation of the
zeta function. This functional equation relies on Poisson summation, and so again relies on the
question’s interpretation as a lattice point counting problem.

Although even the most diehard fan of contour integration would likely prefer the trivial proof,
this analytic method also generalizes usefully to the cubic case, where the Riemann zeta function
is replaced with a Shintani zeta function.

These two counting techniques, in combination with the inclusion-exclusion sieve, are the starting
points of the geometric and analytic proofs of Theorems 1.1 and 1.2, respectively!

We note one additional point related to (2.3). Wright [41] observed that this Dirichlet series has
the beautiful representation

(2.6) ) |Disc(K)|_S:H<; 3 |Disc(Kv);>,

[K:Q]=2 p [Kv»:Qp]<2

and proved this in a much more general framework. (He obtained similar formulas for degree n
cyclic extensions of any number field.) His results follow from considering a nontrivial ‘twist’ of the
adelic zeta function of Tate’s thesis [38]. This twist makes the affine line into a prehomogeneous
vector space, with the action ¢ of GL(1) given by ¢(t)z = t"x.

Essentially, a vector space is prehomogeneous if it has an action of an algebraic group G, which
is transitive over C apart from the vanishing locus of an irreducible polynomial. This “prehomoge-
neous” property is essential both in Bhargava’s work and in the zeta function approach pioneered
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by Sato and Shintani [33]; cubic, quartic, and quintic fields are parameterized by lattice points* up
to the action of G(Z), and these may be counted geometrically or analytically.

Wright’s work on (2.6) and its generalizations mirrors his work with Datskovsky [40, 13, 14]
on the Shintani zeta function associated to cubic fields, and this latter work is at the heart of
the analytic approach to counting cubic fields. In followup work, Wright and Yukie [42] proposed
a program to enumerate quartic and quintic fields by studying the zeta functions associated to
appropriate prehomogeneous vector spaces. So far their program has not succeeded; however:

n = 4, 5. Bhargava [3, 6] proved the asymptotic formulas

) _ _ _
(2.7) N4(X’S4)NﬂH(1+p 2_p3_p 4).X,
p

13

(2.8) Ns(X) ~ 155

(I+p2-p*t-p7) X

The count Ny4(X,Sy) includes only quartic fields with Galois group S4, and (2.7) implies an asymp-
totic for N4(X) in combination with work of Baily [1], Cohen, Diaz y Diaz, and Olivier [9], and
Wong [39]. Bhargava applies the geometric approach alluded to in the Na(X) case (and described
later for N3(X)), and his work may be considered an extension of the methods described in Sections
3 and 6.

n > 5. For n > 5, Bhargava conjectured [4] that N,(X,S,) ~ C,X. The explicit constants Cp,
have natural interpretations as Euler products; each Euler factor represents the ‘probability’ that
a field K of degree n has a certain localization. Ellenberg and Venkatesh [19] have proved the best
upper bound to date; namely N,(X) < Xexp(CViogn),

It is unclear whether prehomogeneous vector spaces may be used to obtain formulas for N, (X)
for n > 5. By a classification theorem of Sato and Kimura [32], it is known that there are no
reduced, irreducible, and reductive prehomogeneous vector spaces parameterizing rings of rank
> 5; it is not yet known whether there are any prehomogeneous vector spaces not satisfying these
assumptions which parameterize such rings.

2.1. Counting torsion elements in class groups. The problem of counting 3-torsion elements
in class groups of quadratic fields is related to that of counting cubic fields. If D # 1 is a fundamental
discriminant, then class field theory provides a bijection between subgroups of C1(Q(v/D)) of index
3, and unramified cyclic cubic extensions of Q(v/D). Such extensions, in turn, correspond to (non-
Galois) cubic extensions of Q whose discriminant is D. Therefore, counting 3-torsion elements in
quadratic fields is equivalent to counting cubic fields whose discriminant is fundamental, which are
those not totally ramified at any prime.

Therefore, this problem may be treated as a variation of the problem of counting cubic fields.
This is the approach of Sections 3, 5, and 6; however, there are other approaches as well, such as
that described in Section 7. A general heuristic for statistics of torsion elements in class groups
was proposed by Cohen and Lenstra [11]; their heuristic has inspired a great deal of interesting
followup work, but for the most part the Cohen-Lenstra heuristics remain wide open.

3. DAVENPORT-HEILBRONN, DELONE-FADDEEV, AND THE MAIN TERMS

In this section we discuss the proofs of the main terms in Theorems 1.1 and 1.2. To summarize,
the idea is as follows: We count cubic fields by counting their maximal orders, and so we count all
cubic orders and then sieve for maximality. We count cubic orders by counting cubic rings and then

4Not all of the G(Z)-orbits correspond to fields, as we will see in the cubic case.
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subtracting the contribution of the reducible rings, and these correspond to binary cubic forms.
(The space of binary cubic forms is prehomogeneous in the sense described previously.) Thus at
last we have a geometric lattice-point counting problem, which can be solved by “brute force”,
so to speak. This interpretation in terms of lattice points also opens the door to the use of zeta
functions.

We recommend the paper of Bhargava, Shankar, and Tsimerman [7] for the simplest self-
contained account of the Davenport-Heilbronn theorems, with complete proofs.

We begin by defining cubic rings and cubic forms. A cubic ring is a commutative ring which is
free of rank 3 as a Z-module. The discriminant of a cubic ring is defined to be the determinant of
the trace form (x,y) = Tr(zy), and the discriminant of the maximal order of a cubic field is equal
to the discriminant of the field.

The lattice of integral binary cubic forms is defined by

(3.1) Vz = {au® + bu*v + cuv® + dv® :a,b,c,d € 7},
and the discriminant of such a form is given by the usual equation

(3.2) Disc(f) = b*¢? — 4ac® — 4b3d — 27ad* + 18abed.
There is a natural action of GLg(Z) (and also of SLy(Z)) on V7, given by

(33) (- D)) = (o) 7).

We call a cubic form f irreducible if f(u,v) is irreducible as a polynomial over Q, and nondegenerate
if Disc(f) # 0.

Cubic rings are related to cubic forms by the following correspondence of Delone and Faddeev,
as further extended by Gan, Gross, and Savin [20]:

Theorem 3.1 ([16, 20]). There is a natural, discriminant-preserving bijection between the set of
GL2(Z)-equivalence classes of integral binary cubic forms and the set of isomorphism classes of
cubic rings. Furthermore, under this correspondence, irreducible cubic forms correspond to orders
in cubic fields.

Finally, if © € Vz is a cubic form corresponding to a cubic ring R, we have Stabgr,(z)(7) =~
Aut(R).

It is therefore necessary to exclude reducible and nonmaximal rings. The nonmaximality condi-
tion is the more difficult of the two to handle, and for this Davenport and Heilbronn established
the following criterion:

Proposition 3.2 ([15, 7]). Under the Delone-Faddeev correspondence, a cubic ring R is mazimal
if any only if its corresponding cubic form f belongs to the set U, C Vz for all p, defined by the
following equivalent conditions:

o The ring R is not contained in any other cubic ring with index divisible by p.
e The cubic form f is not a multiple of p, and there is no GLa(Z)-transformation of f(u,v) =
au? + buv + cuv? + dv? such that a is a multiple of p> and b is a multiple of p.

In particular, the condition U, only depends on the coordinates of f modulo p2.

Therefore one can count cubic fields as follows. One obtains an asymptotic formula for the
number of cubic rings of bounded discriminant by counting lattice points in fundamental domains
for the action of GL2(Z), bounded by the constraint |Disc(x)| < X. The fundamental domains may
be chosen so that almost all reducible rings correspond to forms with a = 0, and so these may be
excluded from the count.
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One then multiplies this asymptotic by the product of all the local densities of the sets U,. This
gives a heuristic argument for the main term in (1.1), and one incorporates a sieve to obtain a
proof.

The main term of Theorem 1.2 may be proved similarly. By class field theory, there is a bijection
between subgroups of Cls(Q(v/D)) of index 3, and cubic fields of discriminant D, which are precisely
those which are not totally ramified at any prime. This ramification condition may also be detected
by reducing cubic forms modulo p?, and thus may be incorporated into Proposition 3.2. The
remainder of the proof is the same.

3.1. The work of Belabas, Bhargava, and Pomerance. In [2], Belabas, Bhargava, and Pomer-
ance (BBP) introduced improvements to Davenport and Heilbronn’s method, and obtained an error
term of O(X7/8+¢) in (1.1) and (1.2). They began by observing that

(3.4) N3 (X) =) ulg)N* (¢, X),

g>1

where N*(g, X) counts the number of cubic orders of discriminant 0 < +D < X which are
nonmaximal at every prime dividing ¢q. This simple observation has proved to be quite useful! For
large g, BBP prove that N*(q, X) < X3“(9 /¢? using reasonably elementary methods. Therefore,
one has

(3:5) N (X) = wa)N*(g, X) + O(X/Q").
q<Q

For small ¢, BBP estimate N+ (¢, X)) with explicit error terms using geometric methods. These
error terms are good enough to allow them to take the sum in (3.4) up to (X log X)'/8, which yields
a final error term of O(X7/8+¢).

In addition, their methods extend to counting Sy-quartic fields, where they obtain a main term
of C4X with error <« X23/24+¢,

4. THE “FOUR APPROACHES”

This, then, brings us to Theorems 1.1 and 1.2. Theorem 1.1 was conjectured in print by Roberts
[31], and implicitly in the foundational work of Datskovsky and Wright [40, 13, 14]. Roberts gave
substantial and convincing numerical evidence for his conjecture, as well as the heuristic argument
described in Section 5.

In this paper we will discuss four very different approaches, all independent, to these secondary
terms.

Shintani zeta functions (Taniguchi-T. [36, 37]). Taniguchi and the author further devel-
oped the theory of Shintani zeta functions, and proved Theorems 1.1 and 1.2 with error terms of
O(X7/9%¢) and O(X'8/23+€) respectively. These proofs closely follow the heuristic arguments of
Roberts and Datskovsky-Wright.

The Shintani zeta function approach is quite flexible, and [36] contains several generalizations of
the main theorems. Perhaps the most interesting of these is a generalization to counting cubic field
discriminants (or 3-torsion elements of class groups) in arithmetic progressions, where a certain
“non-equidistribution” phenomenon arises. For example, when counting cubic field discriminants
= a (mod 7), the secondary term in Theorem 1.1 is different for every residue class a (mod 7).

A refined geometric approach (Bhargava, Shankar, and Tsimerman [7]). Bhargava, Shankar,
and Tsimerman gave the first proof of Theorem 1.1, with an error term of O(X 13/ 16+€) " Their proof
follows Davenport and Heilbronn’s original work, counting lattice points via geometric arguments,
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with substantial simplifications and improvements. Indeed, these improvements are already evident
in their proofs of the classical Davenport-Heilbronn theorems.

Their proof of the secondary term is based on a “slicing” argument which we describe briefly in
Section 6. Their treatment of the error terms introduces a certain correspondence for nonmaximal
cubic rings; this correspondence has also proved useful in the context of Shintani zeta functions,
and a combined approach ([8], in progress) has yielded an error term of O(X?/3+¢).

Equidistribution of Heegner points (Hough [23]). Hough obtained a statement closely
related to Theorem 1.2. His scope is limited to counting 3-torsion elements in imaginary quadratic
fields Q(v/D) with D = 2 (mod 4); in this context, he proves a version of Theorem 1.2, but with
an error term larger than X®/6. In followup work (in preparation), he proves the secondary term
for a smoothed variation of this sum.

Hough derives this result as a consequence of an equidistribution theorem for the Heegner points
associated to the 3-part of class groups of imaginary quadratic fields; his proof of the Davenport-
Heilbronn theorem appears as a bonus, and without reference to binary cubic forms. His techniques
also apply to the k-parts of these class groups, for odd k& > 5, where he obtains secondary terms (of
order X1/2+1/ k). His error terms are currently larger than both the secondary and the main terms
for k£ > 5, but this work sheds light on a notoriously difficult problem.

Trigonal curves and the Maroni invariant (Zhao [44]). Zhao enumerates cubic extensions
of the rational function field [F,(¢) using algebraic geometry. Such extensions are in bijection with
isomorphism classes of smooth trigonal curves, that is, smooth 3-fold covers of P!, and these may be
counted by embedding them in certain surfaces Fj. He obtains a secondary term as a consequence
of a bound for the integer k, called the Maroni invariant; for now his error terms are larger than
this secondary term.

In all of these approaches, the secondary term is easier to see than it is to prove. In particu-
lar, each of these approaches yield the secondary term in a natural way, but it is not a prior:
evident that the error terms can be made smaller than X /6!

In what follows, we will describe, insofar as we can in a couple of pages, why each of these
approaches naturally yields a secondary term. For the Shintani zeta function approach, we will say
only a little about the error term, and for the other three approaches we will say nothing. Indeed,
we will use the notation O(---) whenever the details are best left to the respective papers.

5. THE SHINTANI ZETA FUNCTION APPROACH

Taniguchi and the author [36] proved Theorems 1.1 and 1.2 using the analytic theory of Shintani
zeta functions. The Shintani zeta functions associated to the space of binary cubic forms are
defined® by the Dirichlet series

1 e 1 s
(5.1) &)= Y, o Disc(@)[ "= ) mnmmn.

rCGLa@\VE |Stabgr, z)(7)] A Disc(R)>0

In the former sum, V7 is the lattice defined in (3.1), the sum is over elements of positive or negative
discriminant respectively, and Stab(z) is the stabilizer of z in GL2(Z). The latter sum is over
isomorphism classes of cubic rings. The equality of these two sums follows from the Delone-Faddeev
correspondence (Theorem 3.1).

5The Shintani zeta functions are commonly defined in terms of SLz(Z) rather than GLsa(Z), multiplying (5.1) by
a factor of 2.
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This is an example of a zeta function associated to a prehomogeneous vector space; in this case
the word ‘prehomogeneous’ reflects the fact that GLy(R) acts transitively on the positive- and
negative-discriminant loci VRi. Sato and Shintani [33] developed a general theory of zeta functions
associated to prehomogeneous vector spaces, and for the space of binary cubic forms Shintani proved
[34] that these zeta functions enjoy analytic continuation and an explicit functional equation. These
zeta functions have poles at s = 1, and, anomalously, at s = 5/6.

Shintani’s work opens the door to the study of cubic fields using analytic number theory. In
particular, by Perron’s formula and standard techniques we have

(5.2)
1 2400 L, X + 6 N 5/6 3/54¢
Z |Stab(x)]:/2 ' 3 (s)—s ds = Resg—1§ (s)X+5ResS:5/6§ (s)X°° +0(X ).
GL2(Z2)\V; —300
TDisf(Er)L\XZ

Although the left side is not the counting function of cubic fields, for the first time we see the X°/6
secondary term. This, therefore, gives an explanation for the secondary terms in Theorems 1.1 and
1.2: because the Shintani zeta functions have secondary poles.’

To count cubic fields, the most important step is sieving for maximality. This is possible by
work of Datskovsky and Wright [40, 13, 14], who gave Shintani’s work an adelic formulation along
the lines of Tate’s thesis [38]. This allowed them to incorporate a variety of conditions into the
definition of the Shintani zeta functions, including the Davenport-Heilbronn maximality conditions
(given in Proposition 3.2).

A bogus proof of Roberts’ conjecture is as follows. For a set of primes P, define the P-mazimal
Shintani zeta function by the Dirichlet series (5.1), with the added condition that the only cubic
forms counted are those in the set U, for each p € P. Therefore, letting P be the set of primes
< X, it follows that
(5.3)

! 1 24100 X 6 E
Z m = /2 ‘ f%(s)?ds = Resszlﬁg(s)X + 5Ress:5/6§%(8)X5/6 4 O(X3/5+ )’
+Disc(z)<R —100

where the sum is over all mazimal cubic rings’, or equivalently cubic fields, with +Disc(R) < X.
Unfortunately the error term depends on the particular zeta function £p, and therefore the implied
constant depends on X (indeed, when standard techniques are used, exponentially so!)

However, this flawed argument enabled Datskovsky and Wright [14] to give a rigorous analytic
proof of the Davenport-Heilbronn theorem. The key step® is to use (5.3), but with 7 equal to the
set of all primes < Y, where Y tends to infinity very slowly with X. Given their adelic framework,
their work yielded an asymptotic formula for the number of cubic extensions of any global field (of
characteristic not 2 or 3).

Moreover, Roberts [31] computed the limit of the secondary terms in (5.3) and found an excellent
match with numerical data. This led him to conjecture that (5.3) (equivalently, (1.1)) was correct
with some undetermined error term smaller than X%/,

60f course, this begs the question of why the Shintani zeta functions have poles at s = 5/6. This can of course be
explained by the various calculations in Shintani’s work, but for now a satisfying highbrow argument is unknown to
the author.

"Reducible maximal cubic rings correspond to fields of degree < 2, which can be separately counted and therefore
subtracted with good error terms.

8We have adapted their argument somewhat to our point of view. Datskovsky and Wright also need, as did
Davenport and Heilbronn, the bound (3.5) for the number of cubic rings nonmaximal at any prime > Y.
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He closed his paper with the following (paraphrased very slightly):

The pessimistic discussion in [14] suggests to us that the way may be difficult.
However, one ingredient of a proof might be the functional equation of 5%(5) with
respect to s — 1 — s, studied in [40, 13]. Another ingredient might be [[33], Thm.
3], which concerns growth of arithmetic functions whose associated Dirichlet series
satisfy such a functional equation.

This is actually a good summary of our proofs of Theorems 1.1 and 1.2! To get the ball rolling,
we needed to incorporate the sieve used by Belabas, Bhargava, and Pomerance described in Section
3.1. In place of the P-maximal zeta function we introduced the g-nonmaximal zeta function, which
counts only cubic rings not maximal at each prime dividing ¢. This allowed us to count maximal
cubic rings, and the irreducible such rings correspond to cubic fields.

Remark. We count 3-torsion elements of class groups by a variation of this argument. Such elements
correspond to cubic fields not totally ramified at any prime, and so we expand the definition of the
g-nonmaximal zeta function to count cubic rings either nonmaximal or totally ramified at every
prime dividing gq.

The equation (5.3) holds for each g-nonmaximal zeta function, and the g-dependence of the error
term can be bounded in terms of the exponential sum

(5.4) SRy = Y ig > @y(y) exp(2milz,y]/q%)],

xGVZ/q2Z CEGVZ/qQZ yGVZ/qQZ

where ®,(z) is the characteristic function of the Davenport-Heilbronn g-nonmaximality condition,
and [x,y] = z4y1 — %Cvng + %azgyg — x1y4. Each inner sum appears naturally when we shift the
contour in (5.3) to the left of R(s) = 0 and apply the functional equation. Trivially, the sum in
(5.4) is bounded by ¢®; this is enough to allow us to take @ = X'/ in (3.5) and obtain an error
term of X24/25+€ in the Davenport-Heilbronn theorems.

In [36] we incorporated several improvements to lower the error terms in Theorems 1.1 and 1.2
to O(X7/9t¢) and O(X!8/23+¢)  respectively. Among these is a careful analysis of the sum in (5.4),
carried out in [37]. For each = we obtained exact formulas for the inner sum in (5.4), proving that
the outer sum is < ¢'*e.

5.1. Non-equidistribution in arithmetic progressions. The Shintani zeta function approach
can also be used to study the distribution of cubic field discriminants in arithmetic progressions.
To do this, one twists the Shintani zeta functions by Dirichlet characters, obtaining L-functions
which are also proved to enjoy analytic continuation and a functional equation.

The details are complicated, so here we simply present representative numerical data. The tables
below list the number of cubic fields K with 0 < Disc(K) < 2 - 105 and Disc(K) = a (mod m), for
m =5 and m = 7, and each residue class a.

Discriminant modulo 5 0 1 2 3 4

Actual count 21277 | 22887 | 22751 | 22748 | 22781

Theoretical result 21307 | 22757 | 22757 | 22757 | 22757

Difference 30 130 6 9 24
Discriminant modulo 7 ‘ 0 1 2 3 4 5 6
Actual count 15330 | 17229 | 14327 | 15323 | 17027 | 18058 | 15150
Theoretical result 15316 | 17209 | 14277 | 15316 | 17024 | 18063 | 15131
Difference 14 20 50 7 3 5 19
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The data modulo 5 is essentially equidistributed, apart from the a = 0 column. (The relative deficit
of cubic fields divisible by 5, or by any other modulus, can be explained by a careful reading of
Davenport and Heilbronn’s original paper.) However, the data modulo 7 shows a striking lack of
equidistribution.”

The theoretical results above come from a generalization of Theorem 1.1 to arithmetic progres-
sions; the secondary term now involves a sum of residues of twisted Shintani zeta functions. These
residues are evaluated in [37], and for characters y for which x® # 1, the associated residue at
s = 5/6 is zero. However, when x® = 1 this residue is often nonzero, and nonzero residues explain
biases in arithmetic progressions such as the one seen above.

6. A REFINED GEOMETRIC APPROACH

To give an overview of Bhargava, Shankar, and Tsimerman’s proof [7], we start with their
treatment of the main term in Theorem 1.1. Later, we will describe how the secondary term
appears in their work, but only in the context of irreducible cubic forms (corresponding to cubic
orders).

The argument in [7] largely follows Davenport and Heilbronn’s original work. Fix a sign, and let
V.= denote the irreducible points = € V7 with +Disc(z) > 0. Write ny = 6, n_ = 2 for the order of
the stabilizers of the action of GLa(R) on V. The equality ny = 3n_ reflects the fact that cubic
fields of negative discriminant are three times as common as those of positive discriminant.

Write F for a certain fundamental domain for GL2(Z)\GL2(R) in GL2(R) (see (12) of [7]),
originally constructed by Gauss. For any v € V*, consider the multiset Fv, where the multiplicity
of an element 2 € V7 is equal to the number of g € F for which gv = x. It is readily checked that
each element x € Gz\V" is represented in this multiset n/m(z) times, where m(x) denotes the
size of the stabilizer of x in GLy(Z). We conclude that

1

1 N(VE: X) = E— D XY

(6.1) (V5 X) OdDZ( » Stab@)] {xeﬂ-"vﬂ o ¢ |Disc(z)| < X}
x irred.

The reducible points can be handled without too much difficulty: The number of reducible
integral binary cubic forms au®+bu?v+cuv? +dv? in the multiset Rx (v) := {w € Fv : |Disc(w)| <
X}, satisfying a # 0, is < X3/4*t¢. Conversely, all cubic forms with a = 0 are reducible. This
condition a # 0 meshes well with the geometric arguments that follow. In addition, the weight
|Sta7%>(w)\ occurring in (6.1) can be neglected, as there are < X/2 points z with |Disc(z)| < X with
nontrivial stabilizer.

The formula in (6.1) does not depend on v, and one innovation of [7] (previously used by Bhargava
in [3]) is to average over many v. In particular, define B := {w = (a,b,c,d) € V : 3a® +b* + 2 +
3d? < 10, |Disc(w)| > 1}, and we have

vaBﬂVi n+ {CL' e Fvny irr |DISC( )| < X}|DiSC(U)|_1d’U

fveBmVi |Disc(v)|~1dv

The authors describe this step as “thickening the cusp”. As |Disc(v)|~!dv is GLg(R)-invariant, we
may rewrite this as

(6.3) NV X) =

(6.2) NVE X) =

1

U= f#{x € Vi, ﬂgB |Disc(z)| < X }dg,
g€

9The counting functions for cubic field discriminants = 0 (mod 7) and = 3 (mod 7) are not the same; the equality
of the theoretical results above is a coincidence of roundoff error.
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where M*:= 3£ [ - . |Disc(v)|~'dv. This is rewritten as
1

(6.4) NVE X)=—

N #{x € VEN B(n,t,\, X))t 2dnd*td* \
M= Jgenr(a)arn

1rr

using a standard decomposition of F ((12) of [7]), where B(n,t, A, X) is the region {z € ¢B :
|Disc(z)| < X}. A proposition of Davenport establishes that in this situation, the count of lattice
points above is well approximated by the volume of B(n,t, A, X), provided that ¢ is not too large.
Conversely, when t is large all the lattice points are in the cusp a = 0, and hence reducible and not
counted. Thus, the above is reduced to

1

(6.5) N(VE X) = e LeN,(a)A,A Vol(B(n,t, A, X))t~ 2dnd*td* X + O(- - -).
t<C1/321/3
The condition on t is now removed, subject to an error term, and this integral is equal to

1

6.6) NVEX)= ———
( ( ) 2 M+ vEBNVE

Vol(Rx (v))|Disc(v)| "tdv + O(- - ).

This volume does not in fact depend on v, so that we have (excluding error terms)

2

I 1
(6.7) N(V= X) = EVO](RX(U)) = Tons
6.1. Origin of the secondary term. We now explain how Bhargava, Shankar, and Tsimerman
refine these calculations to obtain a secondary term. Owur brief explanation will necessarily be
somewhat vague, which should encourage the reader to read [7]. We focus on their count of
irreducible binary cubic forms; as in [2, 36], they also incorporate a sieve to count cubic fields.
They begin by incorporating several tweaks to (6.4). For technical reasons, they count discrim-

inants in dyadic intervals [X/2, X]. In addition, they introduce a smooth function ¥y (¢) on Rxq,
such that Wo(¢) = 0 for t < 2 and ¥(t) = 1 for ¢ > 3. They thus rewrite (6.4) (restricted to a

dyadic interval [X/2, X]) as
tk
“(ws))

1 tK

6.8) N(VT [X/2,X :/ Vo —=
(6.8) NV [X/2,X]) = 7= geNl(a)A,A< 0<)\1/3> +
#{z € VEN B(n,t, A, [X/2, X])t " 2dnd*td* \,

ur

where ¥ := 1 — Uy, and k is a parameter to be chosen later (to minimize error terms). The
decomposition ¥ 4+ Wy = 1 splits this integral into two, and we restrict our attention to the ¥y
part, which yields the secondary term.

They now “slice” the count of binary cubic forms by the first coordinate. In particular, for
a € Z, let Bg(n,t, A, [X/2, X]) denote the set of binary cubic forms in B,(n,t, A, [X/2, X]) whose

u? coefficient is equal to a. Then, we have

(6.9) #{x € Vi N B(n, t, A, [X/2,X])} = #{x € VE N Ba(n,t, A, [X/2, X])}.
a€L
a#0

Skipping ahead in their work, the Wy-contribution to (6.8) is equal to

2 & wl/34\ \10/3,1/3
6.10 — / / P ( > Vol (B ([X/(2X\Y), X/ 1)) dXud* A,
( ) 3Miz A=(v/372)3/C Juso O\ 7,173 al/3 ( ([X/(2X%), X/ ]))

a=1
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where B,([Y/2,Y]) denotes the set of cubic forms in B with first coordinate a and discriminant in
[Y/2,Y]. By Mellin inversion, we have

> ul/3k ~
(6.11) > al/3q>o< 73 ) = ((1/3) + 3o (—2)(k*u)?? + O(-- ),
a=1

and it is this (negative) ¢(1/3) which contributes the secondary term. In contrast, the second term
of (6.11) (which “looks larger”, especially in light of the eventual choice k£ = X'/12) is reincorporated
into (6.10) and then combined with the ¥ term of (6.8) to obtain the main term in (6.7). When the
¢(1/3) term is plugged into (6.10), the resulting integral can be evaluated without undue difficulty,
and it has order X°/6.

Remark. As Shankar has explained to the author, a more geometric argument can also be given,
which does not rely on the analytic continuation of the zeta function. However, it is unclear whether
the resulting error term would be smaller than X*/¢, when combined with the sieve.

6.2. A correspondence for cubic forms. To count cubic fields one must sieve for maximality,
using the Davenport-Heilbronn conditions of Proposition 3.2. These could be treated in a naive
manner, but the authors improve their error terms by introducing a useful correspondence for
nonmaximal cubic forms.'?

We introduce some notation. Let N*(Vz; X) count all cubic forms v with 0 < +Disc(v) < X.
For a prime p, let N jE(sz; X) count those cubic forms which are nonmaximal at p, i.e., which do
not lie in the set U, defined in Proposition 3.2. (In referring to cubic forms as “nonmaximal” we
are implicitly appealing to the Delone-Faddeev correspondence.) Finally, for any a € PY(Z/pZ),
let N*(V, 4; X) count those cubic forms v such that the reduction of v modulo p has a as a root.

With this notation, we have the following correspondence:

Proposition 6.1. [7] We have the identity

(6.12) NEUGX)= > N Vs X/0°) = Y NF(Voa; X/p*) + N*(Vi; X/p*).
a€eP(Fp) aeP(Fp)

This identity generalizes in a straightforward way from prime p to squarefree ¢, where we count
cubic forms not in U), for any p|g. The identity amounts to a combinatorial argument, enumerating
ways in which a nonmaximal cubic ring is contained in a larger ring (with smaller discriminant),
and then counting these larger rings.

This identity is crucial in [7], and it can also be translated into an identity for the g-nonmaximal
Shintani zeta function! In work in progress by Bhargava, Taniguchi, and the author [8] we are
developing this combined approach. We have proved an error term of O(X 2/ 3+€) in Theorem 1.1 as
well as a secondary term for relative cubic extensions of quadratic base fields, and we are currently
working on further extensions and generalizations.

7. EQUIDISTRIBUTION OF HEEGNER POINTS

Remarkably, Hough [23] demonstrated that the Delone-Faddeev correspondence is not the only
path to the Davenport-Heilbronn theorem. Hough studied the distribution of Heegner points as-
sociated to 3-torsion elements of ideal class groups of quadratic fields, and he obtained a result
related to Theorem 1.2 as a consequence.

10A§ Shankar explained to me, in the case of cubic fields it is this correspondence which allows them to cross the
X5/ parrier.
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For simplicity, Hough worked only with imaginary discriminants D = 2 (mod 4); note that any
such discriminant is not fundamental, and the discriminant of the field Q(v/D) is 4D.'! He proves
that

4
(7.1) > #Cly(=D) = X + O(X120%),
0<D<X W
D=2 (mod 4)

and for “good”'? test functions ¢, he proves that

(7.2) S #OL(-D)G(D/X) = —5d(1)X + O(XT/*+).
0<D
D=2 (mod 4)

The correct secondary term of order X5/6 appears in both formulas, in spite of the larger error
terms, and in in followup work (in progress) he obtains an error less than X 5/6 in (7.2), thereby
obtaining a proof of a related secondary term.

Hough’s work has very different prospects for generalization from the approaches described pre-
viously. In particular, his approach can be used to study k-torsion in class groups for odd k£ > 3,
and he makes the following conjecture:

Conjecture 1 (Hough [23]). For good test functions ¢ and odd k > 3, we have

13 X #OWDID/X) = AN + O3+ XV o),
D520(<n112)d 4)
where
1¢1-HTEIG —3) o1k | ol—1/k
(4 Cu= gt ra T (1 Uk 4 o )x

11 (1 n lerl (p—l/k Rk lik p_1>>.

p>2

Indeed he “proves” his conjecture, but with error terms larger than X. Even a proof of the
main term for the single case k = 5 would be a major achievement. Indeed, the average size of
Cl,(—D) was conjectured by Cohen and Lenstra [11] to be 2 for each prime p > 3, and Cohen and
Lenstra further conjectured that the p-part of Cl,(—D) is isomorphic to a fixed p-group H with
probability proportional to m. No case of these conjectures is currently known for any p > 5,
and essentially nothing is known for p = 3 beyond Theorem 1.2.

7.1. Heegner points and equidistribution. Hough’s main result concerns the equidistribution
of Heegner points associated to the 3-part of the class group. We recall the relevant background. If
a = [x1,x9] is an ideal of an imaginary quadratic field Q(v/—D), where by reordering if necessary
we have z1/x9 € H := {z € C : (z) > 0}, we call x;/x9 the Heegner point zq associated to
the ideal a. A change of basis for a corresponds to a linear fractional transformation z, — %
with ad — bc = 1, and therefore the Heegner point z, is well-defined in the quotient SLo(Z)\H.

U7t seems that the restrictions that D = 2 (mod 4) and that D be negative could both be lifted with some
effort. The restriction on the sign is the more serious of the two, as elements of class groups of Q(\/ﬁ) for positive
D correspond to closed geodesics rather than Heegner points. However, Duke’s result holds for either sign, so in [23]
Hough expresses optimism that the positive discriminant case of Theorem 1.2 could be handled as well.

12Compact support and infinitely differentiable.
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One checks that zq = 24q for any a € Q(v/—D), and hence z, depends only on the class of a in
Cl(v/—D). One similarly checks that z4 # 2y if a and b are inequivalent in Cl(v/—D).

Therefore, there are h(—D) Heegner points associated to Q(v/—D) in SLy(Z)\H, and in [17]
Duke proves that they equidistribute with respect to the hyperbolic measure dzgdy as D — oo.

Hough proves the same for the Heegner points associated to the 3-part of the ideal class group:

Theorem 7.1 (Hough [23]). Let B be a bounded Borel measurable subset of H having boundary of
measure zero. Then as D — oo,

(7.5) Z #{a primitive, nonprincipal : [a] € Cl3(Q(vV—D)),zq € B} ~ %VOI(B).
0>—D>—X T
d=2 (mod 4)
squarefree

Here we take B C H rather than B C SLy(Z)\H, so that each Heegner point is counted once for
each representative of its SLo(Z) orbit in B. (We recall that a primitive ideal is one without any
rational integer divisors other than 1.)

Straightaway one can see that this is an equidistribution statement. But it also implies the
Davenport-Heilbronn theorem! Taking B to be the standard (or any other) fundamental domain
for the action of SLy(Z) on H, one counts each Heegner point (and thus each nontrivial element of
Cl3(Q(v/—D))) exactly once. The Davenport-Heilbronn theorem follows from the classical compu-
tation vol(B) = 2.

We will follow Hough’s approach sufficiently far as to see the secondary term. His work begins
with the following parameterization of ideals (and therefore Heegner points), essentially due to
Soundararajan [35].

Proposition 7.2. [23, 35] Let D =2 (mod 4) be squarefree and let k > 3 be odd. The set
(7.6) {(,m,n,t) € (ZN* = Im* =1?n® +4>D, 1|D, (m,ntD) =1}

is in bijection with primitive ideal pairs (a,@) with a # 1 and a* principal in Q(v/—D). Ezplicitly,
the ideal a is given as a Z-module by

a=[lm,int™* +v/~D]
where Na = Im and t~! is the inverse of t modulo m.

The proof is relatively straightforward. For example, if a¥ is principal and coprime to D, then
a¥ = (n + tv/—D) and taking norms yields (Na)* = n? + 2D, a solution to (7.6). Ideals a not
coprime to D yield solutions to (7.6) with { > 1.

As one of the two main steps in his proof, Hough now applies this parameterization to count
Heegner points in the region

(7.7) Ry ={:eH : —% <R(z) < % 3(2) > %}

(This establishes the vertical distribution of Heegner points, and he separately establishes that they
are equidistributed horizontally.) He proves that the number of Heegner points in Ry is equal to

6
3
for a fairly complicated error term which depends on both X and Y. The secondary term appears
here for the following reason: By the parameterization above, we may write an ideal a as [Im, Int~!+
vV/—D]. We have Im3 = I?>n? + 2D, so that Im > DY/3, implying that the Heegner point z, has

(7.8) YX 4 Cs6X°5 +O(-- ),
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imaginary part \l/—n? < DY/6 < X6, In other words, the Heegner points equidistribute as X — oo,
but for fixed X they do not appear high in the cusp.
The hyperbolic volume of the subset of Ry with S(z) > X1/6 is equal to

1/2 0o
(7.9) / / drdy _ s,
=—1/2 Jy=x1/6 Y

Accounting (much more carefully than done here!) for the fact that this subset contains no Heegner
points yields the secondary negative term in (7.8), and an analogous argument explains the second
term in (7.3).

Remark. Hough’s methods also extend to arithmetic progressions, where he finds the same lack of
equidistribution observed in Section 5.1; some results along these lines are in preparation.

8. HIRZEBRUCH SURFACES AND THE MARONI INVARIANT

Zhao’s work [44] is still in preparation, so we offer only a very brief overview here. Using algebraic
geometry, Zhao estimates the number of cubic extensions of the rational function field Fy(t).

Fix a finite field F, of characteristic not equal to 2 or 3, and let S(2N) be the number of
isomorphism classes of cubic extensions K/F,(t) of degree 3, such that |Disc(F)| = ¢*V. In [14],
Datskovsky and Wright proved that

ReSsle]Fq(t)(l) 2N
Cr, (1) (3)
where (g (;)(s) is the Dedekind zeta function of Fy(t), or equivalently the zeta function of the

(8.1) S(2N) =2 +o(¢*™),

algebraic curve ]P[}q.

Datskovsky and Wright’s proof uses the adelic Shintani zeta function; in [44] Zhao obtains another
proof of (8.1) using algebraic geometry. A trigonal curve is a 3-fold cover of P!, and there is a
bijection between isomorphism classes of smooth trigonal curves and cubic rational function fields.
Already this perspective is enlightening; for example, the Riemann-Hurwitz formula implies that
the discriminant has even degree, explaining why (8.1) is an equation for S(2/N) and not S(NV).

The problem, then, is to count smooth trigonal curves. These may be counted by embedding the
curves into Hirzebruch surfaces Fy; for each trigonal curve C there is a unique nonnegative integer
k, called the Maroni invariant of C, such that C' embeds into Fj, := Pp1(O & O(—k)).

Zhao now counts curves on each surface Fj and sieves for smoothness, using a sieve method
related to one developed by Poonen [30]. However, the main technique is different and new. The
main term in (8.1) comes from estimating the number of trigonal curves C' with each Maroni
invariant k, and then summing the results over all integers k. However, the Maroni invariant of a
smooth trigonal curve C' is at most N/3, provided that the field corresponding to C' has absolute
discriminant ¢?V. Limiting our sum to k¥ < N/3 naturally introduces a secondary term of order
N3 into (8.1)!

Zhao’s method, like all other methods described in this paper, comes with error terms; at present
he has obtained an error term of O(¢"/*) in (8.1). He has some optimism that this error term can
be reduced below ¢*V/3, thereby proving the secondary term.

9. CONCLUSION

Cubic fields have seen a great deal of recent study recently, and we recommend the papers of
Cohen-Morra [12] and Martin-Pollack [25] (among others) for recent studies of cubic fields from
other perspectives.
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Many interesting open questions remain in the subject. For example, what is the “correct” error
term in the Davenport-Heilbronn theorems? Even if we cannot prove it, it would still be interesting
to determine the expected order of magnitude. To get the best error terms it seems that we should

count fields K of degree at most 3, each weighted by |AT1(K)|' The data in [31] suggests that the

true error may be smaller than X1/2, and a comparison with the divisor problem suggests that the
error might be on the order of X 3/8. Nevertheless, the comparison with the divisor problem is not
exact, and the numerical data is inconclusive.

Perhaps the most compelling open question concerns quartic and quintic fields. Asmyptotic for-
mulas were proved by Bhargava [3, 6]; should these formulas have secondary terms? It is generally
believed that they should; however, so far we lack even a good conjecture. The zeta function ap-
proach seems likely to work, and Yukie [43] has made some progress in this direction; the geometric
approach seems likely to work as well. However, for now the difficulties with either approach appear
rather severe.

Another open question concerns the multiplicity of cubic fields. It is believed that there should
be < n cubic fields of discriminant +n, but the best bound known is O(n'/3+¢), due to Ellenberg
and Venkatesh [19]. Nontrivial bounds were also obtained by Helfgott and Venkatesh [22] and
Pierce [29], using a variety of methods. Any of the methods described in the present paper could
potentially yield improvements, but none of them have succeeded to date. (The present author
has attempted improvements by means of Shintani zeta functions, which have led to a number of
instructve and interesting failures.)

Finally, this paper begs the question of whether unexpected connections might be found between
the four perspectives presented here, and some promising preliminary results have been obtained
in this direction. We anticipate that this and related questions will be addressed in the near future.
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