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PRODUCTS

FRANK THORNE

Abstract. We prove that the Shintani zeta function associated to the space of binary cubic
forms cannot be written as a finite sum of Euler products. Our proof also extends to several
closely related Dirichlet series. This answers a question of Wright [22] in the negative.

1. Introduction

In this paper, we will prove that Shintani’s zeta function is not a finite sum of Euler
products. We will also prove the same for the Dirichlet series counting cubic fields.

Our work is motivated by a beautiful paper of Wright [22]. To illustrate Wright’s work,
we recall a classical example, namely the Dirichlet series associated to fundamental discrim-
inants. We have

(1.1)
∑
D>0

D−s =
1

2

[(
1− 2−s + 2 · 4−s

) ζ(s)

ζ(2s)
+

(
1− 4−s

) L(s, χ4)

L(2s, χ4)

]
,

as well as a similar formula for negative discriminants. These formulas may look a bit messy.
However, if one combines positive and negative discriminants, one has the beautiful formulas

(1.2)
∑

|D|−s =
(
1− 2−s + 2 · 4−s

) ζ(s)

ζ(2s)
=

∏
p

(
1

2

∑
[Kv :Qp]≤2

|Disc(Kv)|sp
)

,

and

(1.3)
∑

sgn(D)|D|−s =
(
1− 4−s

) L(s, χ4)

L(2s, χ4)
.

These are special cases of much more general results. Wright obtains similar formulas for
quadratic extensions of any global field k of characteristic not equal to 2, which are in turn
the case n = 2 of formulas for Dirichlet series parameterizing the elements of k×/(k×)n. He
proves his results by considering twists of the Iwasawa-Tate zeta function

(1.4) ζ(n)(ω, Φ) =

∫
A×/k×

ω(t)
∑
x∈k×

Φ(tnx)|d×t|A.

We will not explain Wright’s notation here, but suffice it to say that the case n = 1 is the
zeta function of Tate’s thesis [17]. This zeta function may be viewed as the zeta function
associated to the affine line, viewed as a prehomogeneous vector space of degree 1, on which
GL(1) acts by φ(t)x = tnx. Generalizing (1.2) and (1.3), Wright proves that all of these zeta
functions can be written as finite linear combinations of Euler products. He further remarks
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that “an analogue of [these formulas] for the space of binary cubic forms is currently unknown;
although, such a formula would be immensely interesting.”

Wright is referring to the Shintani zeta function associated to the space of binary cubic
forms. This zeta function was introduced by Shintani [16] and further studied by Datskovsky
and Wright [21, 6, 7] and many others. This zeta function is defined as follows: The lattice
of integral binary cubic forms is defined by

(1.5) VZ := {au3 + bu2v + cuv2 + dv3 : a, b, c, d ∈ Z},

and the discriminant of such a form is given by the usual equation

(1.6) Disc(f) = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd.

There is a natural action of GL2(Z) (and also of SL2(Z)) on VZ, given by

(1.7) (γ · f)(u, v) =
1

det γ
f((u, v) · γ).

The Shintani zeta functions are given by the Dirichlet series

(1.8) ξ±(s) :=
∑

x∈SL2(Z)\VZ
±Disc(x)>0

1

|Stab(x)|
|Disc(x)|−s,

and Shintani proved that they have analytic continuation to C and satisfy a functional
equation. These zeta functions are interesting for a variety of reasons; see, e.g., [18] and [7]
for applications to counting cubic extensions of number fields. Also note that Datskovsky
and Wright’s work yields an adelic formulation of Shintani’s zeta function, similar to (1.4).

Some further motivation for Wright’s question is provided by work of Ibukiyama and Saito
[10]. They consider the zeta functions associated to the prehomogeneous vector spaces of
n × n symmetric matrices, for n > 3 odd. In particular they prove, among many other
interesting results, explicit formulas for these zeta functions as sums of two products of the
Riemann zeta function.

With these results in mind, one might hope to prove similar such formulas for the zeta
functions (1.8). In this note we answer Wright’s question in the negative, and prove that no
such formulas exist.

Theorem 1.1. Neither of the Shintani zeta functions ξ±(s) defined in (1.8) admits a rep-
resentation as a finite sum of Euler products.

In other words, if we write ξ±(s) =
∑

n a(n)n−s, we cannot write a(n) =
∑k

i=1 cibi(n) for
real numbers ci and multiplicative functions bi(n).

It is interesting to note that these zeta functions do have representations as infinite sums
of Euler products. Of course, there is a tautological such representation, writing n−s =
(1+n−s)−1 and thus regarding each term in (1.8) as a difference of Euler products. However,
Datskovsky and Wright [6] proved the much more interesting formula

(1.9) ξ±(s) = ζ(4s)ζ(6s− 1)
∑

k

2

o(k)
|Disc(k)|−s Rk(2s)

Rk(4s)
,
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where the sum is over all number fields of degree 1, 2, or 3 (up to isomorphism) of the correct
sign; o(k) is equal to 6, 2, 1, or 3 when k is trivial, quadratic, cubic and non-Galois, or cubic
and cyclic respectively; and Rk(s) is equal to ζ(s)3, ζ(s)ζk(s), ζk(s), ζk(s) respectively.

The proof of Theorem 1.1 is not difficult, and it illustrates an application of recent work of
Cohen and Morra ([4]; see also Morra’s thesis [11] for a longer version with more examples).
For a fundamental discriminant D, they prove explicit formula for the Dirichlet series

(1.10) ΦD(s) :=
∑

n

a(Dn2)n−s,

where a(Dn2) is the number of cubic fields of discriminant Dn2. More generally, they prove
a formula for the Dirichlet series counting cubic extensions of number fields K/k, such that
the normal closure of K contains a fixed quadratic subextension K2/k. The formula is
rather complicated, and it involves sums over characters of the 3-part of ray class groups
associated to Q(

√
D,
√
−3) (or more generally to K2(

√
−3)). However, these formulas take

much simpler forms when we assume k = Q, and when we further restrict to D for which
we can control these class groups.

We will apply the following special case of their result:

Theorem 1.2 (Cohen-Morra [4]). If D < 0, D ≡ 3 (mod 9), and 3 - h(D), then we have

(1.11)
∑

n

a(Dn2)n−s = −1

2
+

1

2

(
1 +

2

3s

) ∏
(−3D

p )=1

(
1 +

2

ps

)
.

Furthermore, if D > 0, D ≡ 3 (mod 9), and 3 - h(−D/3), then there exists a cubic field E
of discriminant −27D such that

(1.12)
∑

n

a(Dn2)n−s = −1

2
+

1

6

(
1 +

2

3s

) ∏
(−3D

p )=1

(
1 +

2

ps

)

+
1

3

(
1− 1

3s

) ∏
(−3D

p )=1

(
1 +

ωD(p)

ps

)
,

where ωD(p) = 2 if p splits completely in E, and ωD(p) = −1 otherwise.

Remark. In fact, p splits completely in E if and only if it does so in its Galois closure
E(
√
−3D), and this version of the condition will be more convenient in our proof.

The equation (1.11) is Corollary 7.9 of [4]. The analogue (1.12) does not appear in [4, 11],
so in Section 3 we describe how this formula follows from Cohen and Morra’s work. Moreover,
in forthcoming work with Cohen [5] we will generalize (1.12) to any D, positive or negative,
and we will also prove an analogous formula for quartic fields having fixed cubic resolvent.

We can now summarize our proof of Theorem 1.1, in the easier negative discriminant
case. First observe that

∑
n a(n)n−s := ξ−(s)− ζ(s) cannot be an Euler product: By (1.11),

we may find a negative D ≡ 3 (mod 9) and many primes p for which a(−D) = 0 and
a(−Dp2) > 0.
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To prove that that ξ−(s)− ζ(s) is not a sum of k Euler products, for any k > 1, we choose
appropriate discriminants Di and primes pi such that a(−Dip

2
j) > 0 if and only if i = j.

Then a(n) “takes too many parameters to describe,” and we will formalize this using an
elementary linear algebra argument.

The argument for the positive discriminant case is mildly more complicated, but essen-
tially the same.

Closing remarks. Although we cheerfully admit that a positive result would be more
interesting than the present paper, we submit that our negative result is interesting as well.

One motivation for our work comes from our previous paper [20], where we studied the
Shintani zeta functions analytically, obtaining (limited) results on the location of the zeroes.
These zeta functions essentially fit into the Selberg class, which naturally leads to a host of
questions. For example, do most of the zeroes of the Shintani zeta functions lie on the critical
line? Work of Bombieri and Hejhal [3] establishes that this is true for certain finite sums
of L-functions, conditional on standard hypotheses for these L-functions (including GRH).
As Shintani’s zeta functions lie outside the scope of [3], even a good conjecture would be
extremely interesting.

Our work was also motivated by the desire to incorporate recent developments in the study
of cubic fields into the study of the Shintani zeta function. In addition to the work of Cohen
and Morra, we point out the work of Bhargava, Shankar, and Tsimerman [2], Hough [9], and
Zhao [24] for further approaches to related questions. We write this paper in optimism that
further connections will be found among the various approaches to the subject.

2. Acknowledgments

I would like to thank Takashi Taniguchi, Simon Rubinstein-Salzedo, and the referee for
useful comments, and Yasuo Ohno for pointing out the reference [10] to me, which indirectly
motivated this paper. Finally, I would like to thank Henri Cohen and Anna Morra for
answering my many questions about their interesting work.

3. Proof of Theorem 1.2

In this section, we briefly describe the work of Cohen and Morra [4, 11], and discuss how
(1.12) follows from their more general results.1

In a followup paper with Cohen [5], we will extend Theorem 1.2 and the proof given here
to cover the case where D is any fundamental discriminant. The original work of Cohen and
Morra is more general still, enumerating relative cubic extensions of any number field. The
new ingredient here (and in [5]) is that the Cohen-Morra formulas are somewhat abstract,
and it is not obvious that they yield explicit formulas like (1.12).

Suppose then that K/Q is a cubic field of discriminant Dn2, where D 6∈ {1,−3} is a
fundamental discriminant, and let N be the Galois closure of K. Then N(

√
−3) is a cyclic

cubic extension of L := Q(
√

D,
√
−3), and Kummer theory implies that N(

√
−3) = L(α1/3)

1Our specific references are to the published paper [4], but we also recommend [11] for its enlightening
additional explanation and examples.
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for some α ∈ L. We write (following [4, Remark 2.2])

(3.1) Gal(L/Q) = {1, τ, τ2, ττ2},
where τ, τ2, ττ2 fix

√
D,

√
−3,

√
−3D respectively.

The starting point of [4] is a correspondence between such fields K and such elements α. In
particular, isomorphism classes of such K are in bijection with equivalence classes of elements
1 6= α ∈ L×/(L×)3, with α identified with its inverse, such that ατ ′(α) ∈ (L×)3 for τ ′ ∈
{τ, τ2}. We say (as in [4, Definition 2.3]) that α ∈ (L×/(L×)3)[T ], where T ⊆ F3[Gal(L/Q)]
is defined by T = {τ +1, τ2 +1}, and the notation [T ] means that α is annihilated by T . This
bijection opens the door to Cohen-Morra’s further study of such α in terms of the ideals of
L.

Assume that D ≡ 3 (mod 9), placing us in case (5) of [4, p. 464]. The formula (1.11)
is Corollary 7.9 of [4], and so we assume that D > 0, for which the conditions for (1.12)
are discussed in Remark 7.8. Define Gb, as in [4, Theorem 6.1], to be

(
Clb(L)/Clb(L)3

)
[T ],

where Clb(L) is the ray class group of an ideal b. By Remark 7.8, Gb is of order 1 (for all b
considered in Theorem 6.1), except when b = (3

√
−3), one case where it has order 3.

In this setting, the main theorem (Theorem 6.1 of [4]) reduces to a formula of the shape

(3.2)
∑

n

a(Dn2)n−s = −1

2
+

1

2

∑
b∈B

Ab(s)
∑
χ∈cGb

ωχ(3)
∏(
−3D

p

)
=1

(
1 +

ωχ(p)

ps

)
,

where for p 6= 3 we have

ωχ(p) =

{
2 if χ(pc) = χ(pτ(c)) ,

−1 if χ(pc) 6= χ(pτ(c)) .

We will define c later, but we leave the definitions of the other quantities to [4, 11] (see
also our forthcoming followup [5]). Most of the computations needed to verify (1.12) are
either completely straightforward or carried out in [4, 11]. In particular, the contributions
of the trivial characters are computed there. The one remaining step requiring a substantial
argument is to prove that for each nontrivial character χ of G(3

√
−3), we have ωχ(p) = ωD(p).

This involves a bit of class field theory, and we give the proof here.
Define2 G′

b := Clb(L)/Clb(L)3, so that G′
b is a 3-torsion group containing Gb. We have a

canonical decomposition of G′
b into four eigenspaces for the actions of τ and τ2, and we write

(3.3) G′
b ' Gb ×G′′

b

where G′′
b is the direct sum of the three eigenspaces other than Gb. Note that G′′

b will contain
the classes of all principal ideals generated by rational integers coprime to 3; any such class
in the kernel of T will necessarily be in Clb(L)3. We may thereby write Gb ' Clb(L)/H,
where H is of index 3 and contains the classes of all principal ideals coprime to 3.

By class field theory, there is a unique abelian extension E1/L for which the Artin map
induces an isomorphism Gb ' Gal(E1/L). It must be cyclic cubic, as Gb is, and the unique-
ness forces E1/L to be Galois over Q, as the group Gb is preserved by τ and τ2 and hence

2We have followed the notation of [4] where practical, but the notations G′
b, G′′

b, E, E1, ωD(p), and some
of the notation appearing in (3.2) are used for the first time here and do not appear in [4].
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all of Gal(L/Q). We have Gal(E1/Q) ' S3×C2: τ and τ2 ∈ Gal(L/Q) both act nontrivially
on Gb, and under the Artin map this implies that τ, τ2 both act nontrivially on Gal(E1/L)
by conjugation. This forces ττ2 to commute3 with Gal(E1/L). As ττ2 fixes Q(

√
−3D), this

implies that E1 contains a cubic extension E/Q with quadratic resolvent Q(
√
−3D), which

is unique up to isomorphism. Any prime p which splits in Q(
√
−3D) must either be inert or

totally split in E.
For each prime p with

(−3D
p

)
= 1, write pOL = cτ ′(c), where τ ′ is the element τ or τ2 of

Gal(L/Q) described previously. Here c is either prime or a product of two primes pττ2(p)
depending on whether

(
D
p

)
is −1 or 1. For each such p, ωχ(p) = 2 if χ(pc) = χ(pτ ′(c)),

and ωχ(p) = −1 if χ(pc) 6= χ(pτ ′(c)). With the isomorphism Gb ' Clb(L)/H, we have
χ((p)) = 1, so that χ(c) is well defined and equal to χ(pc) (and similarly for χ(τ ′(c))).
Therefore, the computation χ(c)χ(τ ′(c)) = χ((p)) = 1 implies that χ(c) and χ(τ ′(c)) are
complex conjugates, and thus ωχ(p) is 2 or −1 depending on whether χ(c) = 1 or not.

We claim that that χ(c) = 1 if and only if p splits completely in E. Suppose first that c
is prime in OL. Then χ(c) = 1 if and only if c splits completely in E1/L, in which case (p)
splits into six ideals in E1, which happens if and only if p splits completely in E.

Suppose now that c = pττ2(p) in L. We claim that χ(c) = 1 if and only if χ(p) = 1;
this follows as p and ττ2(p) have the same Frobenius element in E1/L (which in turn is true
because they represent the same element of Gb), and χ(c) = χ(pττ2(p)) = 1. Now χ(p) = 1
if and only if p splits completely in E1/L, in which case (p) splits into twelve ideals in E1;
for this it is necessary and sufficient that p split completely in E.

This proves that ωχ(p) = ωD(p), as desired, provided that we verify that the discriminant
of E is as claimed. As its quadratic resolvent is Q(

√
−3D), we observe that Disc(E) =

r2(−D/3) for some integer r divisible only by 3 and prime divisors of D. No prime ` > 3
can divide r, because `3 cannot divide the discriminant of any cubic field. Similarly 2
cannot divide r, as if 2|D then 4|D, but 16 cannot divide the discriminant of a cubic field.
Therefore r must be a power of 3. We cannot have r = 1, as E(

√
−3D)/Q(

√
−3D) would

be an unramified cubic extension, but h(−D/3) = 1. r cannot be 3, nor can we have 27|r,
as the 3-adic valuation of a cubic field discriminant is never 2 or larger than 5. By process
of elimination, r = 9.

Remark. Belabas [1] has computed a table of all cubic fields K with |Disc(K)| < 106, and
we used his table and PARI/GP [15] to double-check (1.12).

4. Proof of Theorem 1.1

We will require the following lemma, which we extract from a generalization of the
Davenport-Heilbronn theorem [8].

Lemma 4.1. Given any residue class a (mod 36m) with a ≡ 21 (mod 36) or a ≡ 5 (mod 12),
and (6a, m) = 1, there exist infinitely many negative fundamental discriminants n ≡ a (mod 36m)
which are not discriminants of cubic fields.

3More properly speaking, we choose an arbitrary lift of ττ2 to Gal(E1/Q) and denote it also by ττ2; it is
this lift which commutes with Gal(E1/L).
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Proof. This follows from quantitative versions of the Davenport-Heilbronn theorem in arith-
metic progressions. See [18] for sharp quantitative results; alternatively, the methods of [13]
may be adapted to give an easier proof.

In particular, the results stated in [18] imply that the average number of cubic fields K
per negative fundamental discriminant is equal to 1

2
, and that this average is the same when

restricted to any arithmetic progression as above containing fundamental discriminants. The
lemma follows from the fact that this average is less than 1. �

Proof of Theorem 1.1. For simplicity we begin by proving the theorem for the negative dis-
criminant zeta function ξ−(s). The basic idea is the same for all cases.

For reasons that will become apparent later, we begin by subtracting the Riemann zeta
function ζ(s). Suppose that the function ξ−(s)− ζ(s) has a representation

(4.1) ξ−(s)− ζ(s) =
∑

n

a(n)n−s =
∑

n

( k∑
i=1

cibi(n)

)
n−s,

where the ci are nonzero real numbers and the bi(n) are multiplicative functions. We will
obtain a contradiction, implying Theorem 1.1.

Begin by using Lemma 4.1 to choose k odd negative fundamental discriminants ni ≡
21 (mod 36), coprime to each other apart from the common factor of 3, for which there are
no cubic fields of discriminant ni.

Now, for 1 ≤ i ≤ k, choose primes pi ≡ 1 (mod 3) for which
(−3ni

pj

)
=

(
ni

pj

)
= −1 for i 6= j,

and
(−3ni

pi

)
=

(
ni

pi

)
= 1 for each i. (These conditions amount to arithmetic progressions mod∏

ni.) We will count the number of cubic rings with discriminant ni, nip
2
i , and nip

2
j , for each

i and j.
For each ni, there is exactly one quadratic field of discriminant ni. There is exactly one

nonmaximal reducible ring of discriminant nip
2
j for j 6= i, and three such rings of discriminant

nip
2
i ; these nonmaximal rings are counted by (1.9).

By hypothesis, there are no cubic fields of discriminant ni. By (1.11), there are no cubic
fields (or nonmaximal rings) of discriminant nip

2
j for j 6= i, and there is one cubic field of

discriminant nip
2
i .

As the Shintani zeta function counts noncyclic cubic fields with weight 2, and quadratic
rings with weight 1, we conclude that a(nip

2
j)− a(ni) is equal to zero if i 6= j, and is positive

if i = j. This fact is enough to contradict (4.1). To see this, let B be the k × k matrix with
(r, s)-entry csbs(nr), where cs and bs(n) are as in (4.1), and let Ci be the vector (e.g., the
n × 1 matrix) whose rth row is equal to br(p

2
i ) − br(1). Then BCi is the vector whose rth

row is equal to

(4.2)
k∑

`=1

c`b`(nr)
(
b`(p

2
i )− b`(1)

)
=

k∑
`=1

(
c`b`(nrp

2
i )− c`b`(nr)

)
= a(nrp

2
i )− a(nr).

This is equal to zero if and only if i 6= r, and hence the column matrices BCi are linearly
independent over R, and so B is invertible.

Now write C ′ for the vector consisting of k ones, so that the rth row of BC ′ is equal to
a(nr). We chose nr so that there are no cubic fields of discriminant nr for any r, so that the
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Shintani zeta function counts only the quadratic field of discriminant nr. By (4.1), a(nr) = 0
for each nr, and hence BC ′ = 0. But this contradicts the invertibility of B; therefore the
representation (4.1) cannot exist.

Positive discriminants. To prove our result for the positive Shintani zeta function, we again
define a(n) as in (4.1), again subtracting ζ(s). We choose positive fundamental discriminants
ni ≡ 21 (mod 36) as before, with no other prime factors in common, and such that there are
no cubic fields of discriminant −ni/3. It follows (by (1.12), or more simply by the Scholz
reflection principle) that there are also no cubic fields of discriminant ni. We choose primes
pi as before, only this time we require that ωni

(pi) = 2 so that there will again be a cubic
field of discriminant nip

2
i . This condition holds if pi splits completely in E(

√
−3ni), where E

is as in (1.12). Roughly speaking, we can find such a pi because this condition is non-abelian.
More precisely, we want to choose pi so that

(−3ni

pi

)
= 1 (implied if pi splits completely

in E(
√
−3ni)), that

(
ni

pi

)
= 1 (implied by the previous statement when p ≡ 1 (mod 3) and

therefore
(−3

pi

)
= 1), and that

(nj

pi
) = −1 for j 6= i. As the extensions E(

√
−3ni), Q(

√
−3),

and Q(
√

nj) (j 6= i) are all Galois and disjoint over Q, the Galois group of their compositum
is the direct product of their Galois groups, and thus the Chebotarev density theorem implies
that these splitting conditions may all be simultaneously satisfied.

Finally, note that the quadratic fields and rings may be handled exactly as in the negative
discriminant case, and so the remainder of the proof is unchanged.

�

4.1. Generalizations of our results. Our proof generalizes with minimal modification to
some additional Dirichlet series related to Shintani’s zeta functions. We now describe exam-
ples of such Dirichlet series and the modifications required.

The Dirichlet series for cubic fields. A Dirichlet series related to the Shintani zeta func-
tion is that simply counting cubic fields:

(4.3) F±(s) :=
∑

[K:Q]=3
±Disc(K)>0

|Disc(K)|−s.

This does not seem to have any nice analytic properties (such as meromorphic continuation
to C), but we cannot rule such properties out. Needless to say, if F±(s) had such analytic
properties then this would have interesting consequences for the distribution of cubic fields.
For example, this would presumably yield another proof of the Davenport-Heilbronn theorem,
possibly with better error terms than are currently known.

Our argument also proves that neither series F±(s) can be represented as a finite sum of
Euler products. The proof is exactly as before, only easier because there are no quadratic
fields to count. We write

∑
n a(n)n−s = F±(s) instead of subtracting ζ(s) as in (4.1); we

thus have a(ni) = a(nip
2
j) = 0 for each ni when j 6= i, and a(nip

2
i ) > 0, and hence the

conclusion of the argument works.
The same argument also works if each field is counted with the weight 1

|Aut(K)| ; indeed,

our proof does not see any cyclic cubic fields.
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Linear combinations. Suppose that ξ(s) = C1ξ
+(s) + C2ξ

−(s) is a linear combination of
the usual Shintani zeta functions, with C1 · C2 6= 0. Of particular interest are the cases
C1 =

√
3, C2 = ±1, as the resulting zeta functions have particularly nice functional equa-

tions [6, 12, 14]. We can prove once again that ξ(s) is not a finite sum of Euler products: We
choose negative fundamental discriminants ni as above, and the same proof works exactly.
(Instead of subtracting ζ(s) we instead subtract C2ζ(s).) The point is that all of the n
considered in the proof are ≡ 3 (mod 4), corresponding to fields and nonmaximal rings of
discriminant −n, and so no positive fundamental discriminants enter our calculations. We
could similarly work only with positive discriminants and ignore the negative ones.
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