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Abstract

This paper is an expanded version of a talk given at the 2007 Integers Conference, giving
an overview of the Maier matrix method and surveying the author’s work in extending it
beyond the integers.

1. Maier Matrices

Loosely speaking, a Maier matrix is a combinatorial device used to prove the existence of
irregular or interesting patterns in the distribution of primes or related sequences. We will
illustrate the technique with two particularly interesting examples. The first is Maier’s 1985
proof [6] that “unexpected” irregularities exist in the distribution of primes in short intervals.
In particular, Maier proved that for any A > 0 there exists a constant δA > 0 such that

lim sup
n→∞

π(n + logA n)− π(n)

logA−1 n
≥ 1 + δA, lim inf

n→∞

π(n + logA n)− π(n)

logA−1 n
≤ 1− δA. (0.1)

These irregularities are unexpected in the sense that they contradict probabilistic heuristics
for A > 2.

The proof is as follows. For a variable y, let Q =
∏

p<y p, let x1 = QD for some fixed
large D, and let C be a parameter to be determined later. Consider the following matrix of
integers: 

Qx1 + 1 Qx1 + 2 . . . Qx1 + yC

Q(x1 + 1) + 1 Q(x1 + 1) + 2 . . . Q(x1 + 1) + yC

...
...

...
...

Q(2x1) + 1 Q(2x1) + 2 . . . Q(2x1) + yC


The columns form arithmetic progressions modulo Q, and so the prime number theorem

1The author is grateful for financial support from an NSF VIGRE fellowship.
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for arithmetic progressions predicts2 that for each i ∈ [1, yC ] which is coprime to Q, the
corresponding column should contain ∼ Q

φ(Q)
x1

log(Qx1)
primes. Therefore, the number of primes

in the matrix, and thus in an average row, can be asymptotically determined by counting
the number of such i. In fact, the latter quantity is

Φ(yC , y) ∼ yC φ(Q)

Q
eγω(C), (0.2)

for a function ω(C) which converges to e−γ, but oscillates above and below e−γ as C →∞.3

The short intervals occuring in the Maier matrix are of the sort considered in (0.1), and
Maier’s theorem soon follows.

In 1997, Shiu [8] similarly proved the remarkable result that if a, q, and k are arbitrary
integers with (a, q) = 1, there exists a string of k consecutive primes

pn+1 ≡ pn+2 ≡ · · · ≡ pn+k ≡ a (mod q).

(Here pn denotes the nth prime.) Furthermore, for k sufficiently large in terms of q, these
primes can be chosen to satisfy the bound

1

φ(q)

(
log log pn+1 log log log log pn+1

(log log log pn+1)2

)1/φ(q)

� k. (0.3)

To prove (0.3) Shiu constructed a similar Maier matrix; the primary difference is in the
choice of Q. For example, if a = 1, primes 6≡ 1 (mod m) are excluded from the product.
This forces most primes in the matrix to be ≡ 1 (mod m), and Shiu’s result easily follows.

The method has been similarly adapted to prove a host of interesting results about the
distribution of the primes and related integer sequences. For more on this, we recommend
the outstanding survey articles of Granville [4] and of Soundararajan [9]. In this article we
will consider the problem of adapting the Maier matrix method to different settings. In
particular we will describe extensions of the method to the polynomial ring Fq[t] and to
imaginary quadratic fields, where we obtained analogous results.

2. Maier matrices in Fq[t]

The polynomial ring Fq[t] (here Fq is a finite field) has long been studied as an analogue
to the integers. Like the integers, Fq[t] enjoys unique factorization, and has the additional
property that the residue class rings are all finite, so that one may naturally talk about the
‘size’ of elements.

2This is not known to be true for all Q, except under GRH. However, a theorem of Gallagher [3] implies
the correct asymptotic for an infinite set of such Q, where the error term in the asymptotic depends on D.

3In general, Φ(x, y) denotes the number of n ≤ x, all of whose prime factors are at least y.
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Classical methods of analytic number theory have been extremely successful in analyzing
the distribution of primes (e.g., monic irreducible polynomials) in Fq[t]. For example, one
defines the zeta function as

ζFq [t](s) :=
∑

x∈Fq [t]

1

|x|s
, (0.4)

where the sum is over all monic polynomials x, and |x| := #|Fq[t]/(x)| = qdeg x. As there are
exactly qn monics of degree n, one easily obtains the formula

ζFq [t](s) =
1

1− q1−s
.

The Riemann hypothesis is then a triviality, and in fact one has an exact prime number
theorem

π(n) =
1

n

∑
d|n

µ(d)qn/d.

Thinking of n as logq(q
n), this closely mirrors the classical case.

It is therefore natural to ask whether the Maier matrix method can be adapted to Fq[t],
and we have answered this question in the affirmative. To start with, we have the following

Theorem 2.1 ([11], Theorem 1.1). For any fixed A > 0, there exists a constant δA > 0
(depending also on q) such that

lim sup
k→∞

sup
deg f=k

π(f, dA log ke)
qdA log ke+1/k

≥ 1 + δA, lim inf
k→∞

inf
deg f=k

π(f, dA log ke)
qdA log ke+1/k

≤ 1− δA.

Here π(f, i) denotes the number of irreducible monic polynomials p with deg(f − p) ≤ i.

The proof follows similar lines. We write Q =
∏

deg p≤n p, and consider the following matrix:
Qg1 + h1 Qg1 + h2 . . . Qg1 + hj

Qg2 + h1 Qg2 + h2 . . . Qg2 + hj
...

...
...

...
Qgi + h1 Qgi + h2 . . . Qgi + hj


Here g1 through gi range through all monic polynomials of degree 2 deg Q (or of degree
α deg Q for any fixed α > 1), and h1 through hj run through all polynomials of degree s
(of arbitrary leading coefficient), for a parameter s to be determined later. The number of
primes in the whole matrix is ∼ ij

3 deg Q
eγω(s/n), and by appropriately choosing s in terms

of n, the matrix and thus some row can be made to contain more or fewer primes than
expected.

We also proved the following function field analogue of Shiu’s theorem:

Theorem 2.2 ([11], Theorem 1.2). Suppose that k is a positive integer, and a and m
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are polynomials with m monic and (a, m) = 1. Then there exists a string of consecutive
primes

pr+1 ≡ pr+2 ≡ · · · ≡ pr+k ≡ a (mod m).

Furthermore, for sufficiently large k, these primes may be chosen so that their common
degree D satisfies

1

φ(m)

(
log D

(log log D)2

)1/φ(m)

� k. (0.5)

The implied constant depends only on q.

The observant reader will notice that it is not obvious what “consecutive” means; the ele-
ments of Fq[t] are not naturally ordered in the same way as the integers. We may in fact order
our primes with respect to any ordering compatible with our Maier matrix construction, and
in particular our theorem applies with respect to lexicographic order.

This theorem was extended in an interesting way by Tanner [10], who proved the follow-
ing:

Theorem (Tanner). Under the same hypotheses there exists an integer D0 (depending
on q, k, and m) such that for each D ≥ D0 there exists a string of consecutive primes

pr+1 ≡ pr+2 ≡ · · · ≡ pr+k ≡ a (mod m)

of degree D. Furthermore, for sufficiently large k, D0 satisfies (0.5).

Tanner’s proof is an extension of the author’s proof; the point is that since there are many
polynomials of the same degree in Fq[t], it is possible to construct appropriate Maier matrices
where all the polynomials in the matrix are of a given degree.

3. ‘Prime bubbles’ in imaginary quadratic fields

We will now consider the problem of adapting Maier’s matrix method to number fields. Let
K be an imaginary quadratic field. In this setting a positive proportion of ideals correspond
to elements (although the unit group interferes), and the prime elements of OK can be natu-
rally visualized as lattice points in Z. Adapting the proof of Shiu’s theorem, we proved that
there are clumps of primes, all of which lie in an arbitrary fixed arithmetic progression, up
to multiplication by units:

Theorem 3.1 ([12], Theorem 1.1). Suppose K is an imaginary quadratic field, k is a
positive integer, and a and q are elements of OK with q 6= 2 and (a, q) = 1. Then there
exists a “bubble”

B(r, x0) := {x ∈ C : |x− x0| < r} (0.6)
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with at least k primes, all of which are congruent to ua modulo q for units u ∈ OK . Fur-
thermore, for k sufficiently large in terms of q (and K), x0 can be chosen to satisfy

1

φK(q)

(
log log |x0| log log log log |x0|

(log log log |x0|)2

)ωK/hKφK(q)

� k. (0.7)

The implied constant is absolute.

Here ωK denotes the number of units in OK , hK is the class number of K, and φK(q) :=
|(OK/(q))×|. As an example of such a ‘prime bubble’ in Z[i] (which we found by computer
search), the ball of radius

√
23.5 centered at 59 + 779i contains six primes, all congruent to

±1 or ±i modulo 5 + i.

To prove our result we construct the following Maier matrix:
Qi1 + b1 Qi1 + b2 . . . Qi1 + bJ

Qi2 + b1 Qi2 + b2 . . . Qi2 + bJ
...

...
...

...
QiI + b1 QiI + b2 . . . QiI + bJ

 (0.8)

Q is defined to be any generator of the ideal Q, given by

Q := q
∏

p∈P,p6=p0

p, (0.9)

where P ranges over primes of norm ≤ y with restrictions on the residue classes modulo q
(which depend on a). The need to exclude one prime p0 will be explained shortly.

The i range over all elements of OK with norm in (NQD, 2NQD), and the b range over
all elements of norm less than either yz or 9yz (where z will be chosen later in terms of y).
In effect we are constructing two Maier matrices, a “good” matrix (the smaller one, where
Nb < yz) and a “bad” one. We then prove that nearly all of the primes in the matrix are
≡ a (mod q), where “good” primes ≡ a (mod q) are counted only in the good matrix, and
“bad” primes 6≡ a (mod q) are counted in the larger bad matrix.

There are two more important ingredients in the proof. The first is an appropriate version
of the prime number theorem for arithmetic progressions, valid when the relative size of Q
and i is as in (0.8). We cannot expect to prove such a result for all Q, but we can for a large
class of moduli Q, as defined in (0.9). The starting point is a zero-density estimate for Hecke
L-functions proved by Fogels [2], and we then follow techniques of Gallagher [3] and Shiu to
obtain our result. (We remove the prime p0 to ensure that the associated L-functions do not
have any Siegel zeroes.)

The last ingredient in the proof is a bit of combinatorial geometry. Using the above
techniques, we can prove that that some row of our Maier matrix is a pair of concentric balls
in the complex plane, such that the inner ball contains many more good primes than the
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outer ball has bad. We must now prove that this bubble contains a sub-bubble containing
many good primes and no bad ones.

To do this we rely on the existence of a Delaunay triangulation. The Delaunay trian-
gulation of a set of points has the property that no point in the triangulation is inside the
circumcircle of any triangle. We take our set of points to be the set all bad primes within
the outer ball, as well as a regular 7-gon (of a certain radius) outside the inner ball but
inside the outer one. The circumcircles associated to the Delaunay triangulation contain
all of the good points and none of the bad, and the number of such circumcircles is easily
bounded from above. Moreover, any circumcircle intersecting the inner ball can be proved
to lie entirely within the outer ball. The circumcircle containing the most good primes is
therefore our bubble of congruent primes.

4. Concluding remarks

In the first place, we would like to discuss some additional results which we do not have
the space to fully describe here. In particular, Granville and Soundararajan [5] recently
generalized Maier’s theorem and proved that similar irregularities occur in any arithmetic
sequence. Here an “arithmetic sequence” is any sequence A of integers, such that for all
integers d coprime to some ‘bad’ modulus S, the proportion of elements of A divisible by d
is asymptotic to h(d)/d, where h(d) is a multiplicative function h(d) taking values in [0, 1].
It is also assumed that a suitable weighted average of h(p) is sufficiently smaller than 1.

Examples of such sequences include the primes and arbitrary subsets thereof, almost
primes, sums of two squares, norms of algebraic integers from extensions of Q, and many
other interesting sequences. Granville and Soundararajan’s main result is then that any
such sequence cannot be uniformly distributed in both short intervals and arithmetic pro-
gressions to somewhat large moduli. To prove their result they combine a generalized Maier
matrix construction with a detailed analysis of oscillation in arithmetic functions (such as
the function ω(C) occuring in (0.2)).

In [13], the present author translated their mechanism to Fq[t]. In brief, the method
works. In particular we obtained several results on general arithmetic sequences in Fq[t],
exactly along the lines suggested by Granville and Soundararajan’s work. Furthermore, in
some cases we were be able to be quite precise about where irregularities occur, proving (for
example) that they occur among the polynomials of every sufficiently large degree.

We conclude with a few remarks about some related work and some questions that re-
main. Recently, Pollack [7] has proved an Fq[t] version of the quantitative Bateman-Horn
conjecture (which implies the Hardy-Littlewood prime tuple conjecture as a special case),
valid when q is coprime to 2n and large in relation to n. Conversely, Conrad, Conrad, and
Gross [1] have found a global obstruction to a somewhat different version of this conjecture.
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This obstruction is related to a certain average of the Möbius function, and these authors
propose a revised conjecture based on geometric considerations as well as numerical calcula-
tions. Finite extensions of Fq[t] are naturally associated to algebraic curves, and one wonders
whether the geometry of these curves may have additional consequences for the distribution
of primes.

In the number field case we have only scratched the surface, and one could hope to
prove all sorts of additional results. For example, one might ask whether one could prove a
result similar to Theorem 2.2 for any number field. The statement of such a result might be
somewhat more involved, but certainly we believe that the proof should generalize.

One might also ask whether irregularities of the form (0.1) can be proved to exist in
number fields. The norms of primes are already known to be irregularly distributed, as these
form an arithmetic sequence in the sense of [5]. But nothing has yet been proved about these
sequences themselves. We are optimistic that techniques similar to those discussed in this
article should yield interesting results.
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